共查询到20条相似文献,搜索用时 15 毫秒
1.
G. DE VISSCHER 《国际可持续能源杂志》2013,32(4):229-236
A solar still was constructed and operated with and without reflectors and black dye under different weather conditions. It is found that addition of a black dye to the water basin and installation of reflectors (mirrors) on the inside walls of the still enhance still productivity considerably. 相似文献
2.
从西门子Econopac标准化模块设计概念开始,详细地阐述了F级燃气轮机V94.3A的罩壳系统。通过对燃气轮机和汽轮机不同运行环境的比较,提出对燃气轮机罩壳系统的要求,进而对V94.3A燃气轮机罩壳系统的系统组成及其各个子系统的主要功能作出了详细的介绍。 相似文献
3.
西门子V94.3A型燃气轮机技术升级改造介绍 总被引:2,自引:0,他引:2
本文介绍了通过增加辅助系统或者改进部件设计等途径,对西门子V94.3A型燃气轮机进行技术升级改造的几种方案,以期达到提高机组出力和效率的目的,如压气机湿压缩系统、压气机通流量升级、液力间隙优化和部分负荷运行优化等.同时还介绍了这些系统相应的原理,运行及维护. 相似文献
4.
Ammar A. Alsairafi 《国际能源研究杂志》2012,36(8):891-901
Combined‐cycle power plants are currently preferred for new power generation plants worldwide. The performance of gas‐turbine engines can be enhanced at constant turbine inlet temperatures with the addition of a bottoming waste‐heat recovery cycle. This paper presents a study on the energy and exergy analysis of a novel hybrid Combined‐Nuclear Power Plant (HCNPP). It is thus interesting to evaluate the possibility of integrating the gas turbine with nuclear power plant of such a system, utilizing virtually free heat. The integration arrangement of the AP600 NPP steam cycle with gas turbines from basic thermodynamic considerations will be described. The AP600 steam cycle modifications to combine with the gas turbines can be applied to other types of NPP. A simple modeling of Alstom gas turbines cycle, one of the major combined‐cycle steam turbines manufacturers, hybridized with a nuclear power plant from energetic and exergetic viewpoint is provided. The Heat Recovery Steam Generator (HRSG) has single steam pressure without reheat, one superheater and one economizer. The thermodynamic parameters of the working fluids of both the gas and the steam turbines cycles are analyzed by modeling the thermodynamic cycle using the Engineering Equation Solver (EES) software. In case of hybridizing, the existing Alstom gas turbine with a pressurized water nuclear power plants using the newly proposed novel solution, we can increase the electricity output and efficiency significantly. If we convert a traditional combined cycle to HCNPP unit, we can achieve about 20% increase in electricity output. This figure emphasizes the significance of restructuring our power plant technology and exploring a wider variety of HCNPP solutions. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
5.
Energy and exergy analyses were previously performed by the authors of a coal-fired steam power plant. These analyses suggest that the steam generator (and its combustion and heat-transfer processes) is the most inefficient plant device and that significant increases in overall plant efficiency are possible by reducing steam-generator irreversibilities. Here, a possible plant alteration is examined to increase the efficiency of the plant by reducing the irreversibility rate in the steam generator. The modification involves decreasing the fraction of excess combustion air from 0.40 to 0.15. The results show that overall-plant energy and exergy efficiencies both increase by 1.4% when the fraction of excess combustion air decreases from 0.4 to 0.15.Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
6.
In the present work, exergy analysis of a coal‐based thermal power plant is done using the design data from a 210 MW thermal power plant under operation in India. The entire plant cycle is split up into three zones for the analysis: (1) only the turbo‐generator with its inlets and outlets, (2) turbo‐generator, condenser, feed pumps and the regenerative heaters, (3) the entire cycle with boiler, turbo‐generator, condenser, feed pumps, regenerative heaters and the plant auxiliaries. It helps to find out the contributions of different parts of the plant towards exergy destruction. The exergy efficiency is calculated using the operating data from the plant at different conditions, viz. at different loads, different condenser pressures, with and without regenerative heaters and with different settings of the turbine governing. The load variation is studied with the data at 100, 75, 60 and 40% of full load. Effects of two different condenser pressures, i.e. 76 and 89 mmHg (abs.), are studied. Effect of regeneration on exergy efficiency is studied by successively removing the high pressure regenerative heaters out of operation. The turbine governing system has been kept at constant pressure and sliding pressure modes to study their effects. It is observed that the major source of irreversibility in the power cycle is the boiler, which contributes to an exergy destruction of the order of 60%. Part load operation increases the irreversibilities in the cycle and the effect is more pronounced with the reduction of the load. Increase in the condenser back pressure decreases the exergy efficiency. Successive withdrawal of the high pressure heaters show a gradual increment in the exergy efficiency for the control volume excluding the boiler, while a decrease in exergy efficiency when the whole plant including the boiler is considered. Keeping the main steam pressure before the turbine control valves in sliding mode improves the exergy efficiencies in case of part load operation. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
7.
介绍了目前世界上最先进的F级燃气轮机V94.3A的主要结构和Siemens进行制造的工艺特点,结合企业现状提出了国产化制造的工艺技术和方法,并详细阐明了采用新技术和新工艺的理由。目前这些新技术和新工艺正在上海汽轮机有限公司制造的9台V94.3A燃气轮机项目中得到逐步实施。 相似文献
8.
Combined cycle power plants (CCPPs) have an important role in power generation. The objective of this paper is to evaluate irreversibility of each part of Neka CCPP using the exergy analysis. The results show that the combustion chamber, gas turbine, duct burner and heat recovery steam generator (HRSG) are the main sources of irreversibility representing more than 83% of the overall exergy losses. The results show that the greatest exergy loss in the gas turbine occurs in the combustion chamber due to its high irreversibility. As the second major exergy loss is in HRSG, the optimization of HRSG has an important role in reducing the exergy loss of total combined cycle. In this case, LP‐SH has the worst heat transfer process. The first law efficiency and the exergy efficiency of CCPP are calculated. Thermal and exergy efficiencies of Neka CCPP are 47 and 45.5% without duct burner, respectively. The results show that if the duct burner is added to HRSG, these efficiencies are reduced to 46 and 44%. Nevertheless, the results show that the CCPP output power increases by 7.38% when the duct burner is used. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
9.
根据分析理论,把锅炉、汽轮机及发电厂热力系统作为一个整体,通过对发电厂各环节进行分析找到具体损失环节并对具体位置提出改造方案,是发电厂改造的一种新方法。以某超超临界机组为例,运用分析理论找到损失环节,找到二次风温及给水温度对锅炉系统及电厂热力系统影响的关系,通过增加一级高压加热器提高给水温度,同时在保证锅炉排烟温度不变的前提下适当地提高二次风温,分析在给水温度及二次风温的双重作用下,锅炉乃至整个机组性能的变化。结果表明,当给水温度由299.5℃升高至322℃时,二次风温由327.8℃升高至360℃,锅炉系统传热损失由3 443 kJ/kg降低至3 254 kJ/kg,燃烧环节损失由6 204 kJ/kg降低至6 158 kJ/kg,锅炉效率由54.15%升高至54.45%,机组目的效率由42%升高至46.7%。 相似文献
10.
In this study, a thermodynamic analysis of a Rankine cycle reheat steam power plant is conducted, in terms of the first law of thermodynamic analysis (i.e. energy analysis) and the second law analysis (i.e. exergy analysis), using a spreadsheet calculation technique. The energy and exergy efficiencies are studied as 120 cases for different system parameters such as boiler temperature, boiler pressure, mass fraction ratio and work output. The temperature and pressure values are selected in the range between 400 and 590°C, and 10 and 15 MPa, being consistent with the actual values. The calculated energy and exergy efficiencies are compared with the actual data and the literature work, and good agreement is found. The possibilities to further improve the plant efficiency and hence reduce the inefficiencies are identified and exploited. The results show how exergy analysis can help to make optimum design decisions in a logical manner. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
11.
西门子V94.3A燃机参数偏离对机组功率和效率的影响 总被引:1,自引:0,他引:1
应用小偏差原理,求得燃气轮机机组中10个主要参数(Ck,T1,ηk,ηT,ηc,εk,ξ1,ξ2,ξ3)变化对机组出力和效率的影响系数,并以西门子V94.3A燃机为实例进行讨论。 相似文献
12.
为迎接西气东输和液化天然气的输人,我国东部地区正准备建设一批大型联合循环电厂。为使建成后的电厂单位投资少、热效率高、投产后具有较好的效益,选择合适的余热锅炉蒸汽系统至关重要。对我国急需建设的大型天然气联合循环电厂的余热锅炉蒸汽系统中有关余热锅炉节点温差和接近点温差的选取、蒸汽压力级数的选择、排烟温度的高低、烟气阻力的大小、蒸汽参数和再热的确定、给水的加热和除氧方式及炉型的选择进行分析和研究,得出明确的优化结论。 相似文献
13.
This study deals with the energetic and exergetic performance assessment of a combined heat and power system with micro gas turbine (MGTCHP). Quantitative energy and exergy balance for each component and the whole MGTCHP system was considered, while energy and exergy consumption within the system were determined. The performance characteristics of this MGTCHP system were evaluated using energy and exergy analyses methods. The energetic and exergetic efficiencies of the MGTCHP system are calculated as 75.99% with 254.55 kW (as 99.15 kW—electrical and 155.40 kW—hot water@363.15 K) and 35.80% with 123.61 kW (as 99.15 kW—electrical and 24.46 kW—hot water@363.15 K), respectively. The maximum energy loss and exergy consumption occur at 44.03 kW in the stack gas and 129.61 kW in the combustion chamber, respectively. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
14.
This study deals with the exergetic performance assessment of a combined heat and power (CHP) system installed in Eskisehir city of Turkey. Quantitative exergy balance for each component and the whole CHP system was considered, while exergy consumptions in the system were determined. The performance characteristics of this CHP system were evaluated using exergy analysis method. The exergetic efficiency of the CHP system was accounted for 38.16% with 49 880 kW as electrical products. The exergy consumption occurred in this system amounted to 80 833.67 kW. The ways of improving the exergy efficiency of this system were also analysed. As a result of these, a simple way of increasing the exergy efficiency of the available CHP system was suggested that the valves‐I–III and the MPSC could be replaced by a 3500 kW‐intermediate pressure steam turbine (IPST). If the IPST is installed to the CHP system (called the modified CHP (MCHP) system), the exergetic efficiency of the MCHP system is calculated to be 40.75% with 53 269.53 kW as electrical products. The exergy consumption is found to be 77 444.14 kW in the MCHP system. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
15.
Ammar A. Alsairafi 《国际能源研究杂志》2013,37(3):211-227
This paper provides a theoretical study of the effects of ambient conditions on the thermodynamic performance of a hybrid combined‐nuclear cycle power plant. The operational parameters investigated are based on the first and second laws of thermodynamics, which include the ambient air temperature and ambient relative humidity (Φ). The results obtained for the gas turbine model are shown to agree very well with operational data from the Al‐Zour Emergency power plant in Kuwait. The ambient temperature was studied within the range of 0–55 °C. The analysis shows that the ambient air temperature has strong effects on plant performance and that operating the system at a high temperature will degrade the performance. Power output is reduced when the temperature is above the standard ambient temperature of 15 °C, and this loss rate is about 17% at 55 °C. The effect of ambient relative humidity (Φ) becomes significant only at higher temperatures. The ambient temperature has a large effect on the exergy destruction of the heat recovery steam generator exhaust, but it has little effect on other components of the plant. The analysis also indicates that reducing the temperature from 55 to 15 °C could help decrease the total exergy destruction of the plant by only 2%. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
16.
针对浙江省燃气-蒸汽联合循环发电厂燃机的余热锅炉经历了如下的进展:第一代为配36MW燃机的国产余热锅炉,第二代是配9E型燃机的进口余热锅炉,第三代是配9F型燃机的引进技术国产余热锅炉.文章对比了三代余热锅炉的性能参数,指出总的发展趋势是应用更大容量及更高效率的余热锅炉. 相似文献
17.
Energy and exergy analysis were carried out for a combined‐cycle power plant by using the data taken from its units in operation to analyse a complex energy system more thoroughly and to identify the potential for improving efficiency of the system. In this context, energy and exergy fluxes at the inlet and the exit of the devices in one of the power plant main units as well as the energy and exergy losses were determined. The results show that combustion chambers, gas turbines and heat recovery steam generators (HRSG) are the main sources of irreversibilities representing more than 85% of the overall exergy losses. Some constructive and thermal suggestions for these devices have been made to improve the efficiency of the system. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
18.
In this study, a conventional steam power plant with two regenerative boilers is considered, and one of its boilers is replaced with parabolic solar dish collectors and storing the produced thermal energy by the phase change material (PCM) in a storage tank. The results show the necessity of the existence of an auxiliary fired‐gas boiler to provide constant load during the whole 24 hours. The performance of the proposed hybridized system is evaluated through energy and exergy analyses. It was demonstrated that substituting solar collectors with one of the boilers marginally lowers the energy efficiency but increases the exergy efficiency of the whole power plant up to 41.76%. Moreover, it is found out that this hybridization decreases the total irreversibility of the power plant in comparison with the base case, from 51.1 to 47.2 MW. The parametric analysis states that raising the mass flow rate of the heat transfer fluid in the solar collectors not only enhances the system performance but also increases the volume of the PCM tank. 相似文献
19.
本文采用“(火用)效率”这一概念对莎中热电站从英周引进的SK15HE 热电联供装置的热能分级利用进行了分析。 相似文献
20.
The objective of this paper is to perform the energy, exergy and exergoeconomic analysis for the Hamedan steam power plant. In the first part of the paper, the exergy destruction and exergy loss of each component of this power plant is estimated. Moreover, the effects of the load variations and ambient temperature are calculated in order to obtain a good insight into this analysis. The exergy efficiencies of the boiler, turbine, pump, heaters and the condenser are estimated at different ambient temperatures. The results show that energy losses have mainly occurred in the condenser where 306.9 MW is lost to the environment while only 67.63 MW has been lost from the boiler. Nevertheless, the irreversibility rate of the boiler is higher than the irreversibility rates of the other components. It is due to the fact that the combustion reaction and its high temperature are the most significant sources of exergy destruction in the boiler system, which can be reduced by preheating the combustion air and reducing the air–fuel ratio. When the ambient temperature is increased from 5 to 24°C, the irreversibility rate of the boiler, turbine, feed water heaters, pumps and the total irreversibility rate of the plant are increased. In addition, as the load varies from 125 to 250 MW (i.e. full load) the exergy efficiency of the boiler and turbine, condenser and heaters are increased due to the fact that the power plant is designed for the full load. In the second part of the paper, the exergoeconomic analysis is done for each component of the power plant in order to calculate the cost of exergy destruction. The results show that the boiler has the highest cost of exergy destruction. In addition, an optimization procedure is developed for that power plant. The results show that by considering the decision variables, the cost of exergy destruction and purchase can be decreased by almost 17.11%. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献