首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A seismic structure isolated by a conventional passive isolation system is usually a long-period structural system; therefore, although its dynamic response may be effectively mitigated in a regular earthquake, the responses may be considerably amplified in a near-fault earthquake with long-period characteristics, due to the low-frequency resonant effect. In order to overcome this problem, a sliding isolation system equipped with a new type of the semi-active damper called a resettable variable stiffness damper (RVSD) is proposed in this study. An RVSD damper is similar to a conventional resettable stiffness damper, except that it has a variable stiffness part. By controlling the variable stiffness, the damper force provided by the RVSD will follow a target force that is determined on-line by a general, active control law. As a result, the RVSD damper is able to prevent the abrupt changes of the damper force that inevitably exists in a conventional resettable damper. The harmonic and seismic responses of an isolation system with the RVSD are studied numerically and compared with the other types of isolation systems. The simulated results demonstrate that the RVSD is able to attenuate the low-frequency resonance behavior of the seismic isolation system induced by long-period ground motions. As compared with an isolation system with a conventional resettable damper, the study shows that isolation with the RVSD is superior in reducing the acceleration response due to a near-fault earthquake, while maintaining its effectiveness in the suppression of the isolator displacement.  相似文献   

2.
An integrated optimal structural design method for a diagrid structure and control device was developed. A multi-objective genetic algorithm was used and a 60-story diagrid building structure was developed as an example structure. Artificial wind and earthquake loads were generated to assess the wind-induced and seismic responses. A smart tuned mass damper (TMD) was used as a structural control system and an MR (magnetorheological) damper was employed to develop a smart TMD (STMD). The multi-objective genetic algorithm used five objectives including a reduction of the dynamic responses, additional stiffness and damping, mass of STMD, capacity of the MR damper for the integrated optimization of a diagrid structure and a STMD. From the proposed method, integrated optimal designs for the diagrid structure and STMD were obtained. The numerical simulation also showed that the STMD provided good control performance for reducing the wind-induced and seismic responses of a tall diagrid building structure.  相似文献   

3.
Hybrid Control of Smart Structures Using a Novel Wavelet-Based Algorithm   总被引:1,自引:1,他引:1  
Abstract:   A tuned liquid column damper (TLCD) system provides the same level of vibration suppression as a conventional tuned mass damper (TMD) system but with several advantages. A new hybrid control system is presented through judicious combination of a passive supplementary damping system with a semi-active TLCD system. The new model utilizes the advantages of both passive and semi-active control systems, thereby improving the overall performance, reliability, and operability of the control system during normal operations as well as a power or computer failure. The robust wavelet-hybrid feedback least mean square (LMS) control algorithm developed recently by the authors is used to find optimal values of the control parameters. The effectiveness and robustness of the proposed hybrid damper-TLCD system in reducing the vibrations under various seismic excitations are evaluated through numerical simulations performed for an eight-story frame using three different simulated earthquake ground accelerations. It is found that the new model is effective in significantly reducing the response of the structure under various seismic excitations.  相似文献   

4.
为了提高传统的调谐质量阻尼器(TMD)对建筑结构的减震效果,提出了一种可实时调整频率和阻尼的半主动电涡流单摆式调谐质量阻尼器(SAEC-PTMD)。由Hilbert-Huang变换(HHT)识别结构的瞬时频率,通过基于HHT的控制算法实时调节SAEC-PTMD的摆长进行频率的调节。研究并拟合了电涡流有效阻尼系数与磁导间距之间的关系,通过基于线性二次型高斯(LQG)的控制算法实时调节磁导间距,以实时调节阻尼系数。为了验证SAEC-PTMD对建筑结构的减震效果,对一单自由度结构模型在地震激励下的震动响应进行数值模拟。数值模拟中,采用一经优化设计的被动TMD (PTMD)作为对比,并考虑由主结构的累积损伤引起自身频率下降而造成PTMD的失调效应。以主结构的加速度和位移时程峰值、整体均方根值及其加速度和位移反应谱作为评价指标,评估了SAEC-PTMD在结构发生损伤前后对PTMD的改良效果。数值模拟结果表明,在结构发生损伤前后,SAEC-PTMD均比经优化设计的PTMD具有更好的减震效果。  相似文献   

5.
宿迁市府苑小区综合楼隔震分析   总被引:2,自引:0,他引:2  
宿迁市府苑小区综合楼位于 8度区 ,设计基本地震加速度值为 0 3 0 g ,为 6层底部框架砌体结构 ,平面呈三折线形。工程采用基础隔震技术进行结构设计 ,隔震层由橡胶隔震支座、滑移支座、粘滞消能器组成。对隔震体系空间模型的时程分析表明 :采用基础隔震措施可显著降低上部结构的地震作用 ;设置粘滞消能器能较好地解决降低上部结构的地震作用和限制隔震层位移之间的矛盾 ,有效地消除结构的扭转效应  相似文献   

6.
By now, many civil engineering researchers have extensively studied the application of earthquake energy dissipation systems in seismic‐resistant buildings. Earthquake energy dissipation systems play an important role in enhancing the sustainability of structures against seismic excitation. Frame buildings are strengthened by installing damper devices as supplemental structural members. This article presents the finite‐element‐based development of an analytical model for a viscous wall damper (VWD) device, an alternative to other earthquake energy dissipation systems, which can diminish the effect of earthquakes on structures and improve the seismic performance of multistory buildings subjected to ground motion. The constitutive law of VWDs has been formulated and integrated to develop a finite element model of VWD compatible with the reinforced concrete (RC) structure analytical model. Then, the finite element algorithm has been developed for inelastic analysis of RC buildings equipped with VWD devices capable of detecting damage to both structural members and damper connections under dynamic loading. Based on the developed system, the special finite element program was codified and verified by applying it to a real model of a RC building with supplementary VWD devices. Influence of VWDs on seismic performance of the RC building during earthquake excitation was evaluated. The proposed analytical model for VWD is verified by using experimental test data and analysis result proved that this energy dissipation system succeeds by substantially diminishing and dissipating a structure's induced seismic responses. Also the parametric study indicated that the damping coefficient is very effective on performance of VWD.  相似文献   

7.
针对橡胶隔震垫作为一种被动控制装置,存在最优控制范围窄的局限性。将磁流变阻尼器与橡胶隔震垫相结合,组成智能基础隔震系统应用于结构振动控制中,数值模拟分析了在地震力作用下原结构,普通隔震结构,隔震层附加MR阻尼器在Passive—off状态,Passive—on状态和磁流变阻尼器半主动智能状态下结构的反应。试验结果表明,结构在磁流变阻尼器半主动智能状态下控制效果最优,能有效克服被动隔震最优控制频带窄的缺点,其相对一般被动隔震装置,能同时减小隔震层位移,上部结构层间位移和各层最大加速度。  相似文献   

8.
为研究拟负刚度控制算法及磁流变智能隔震系统的有效性和适应性,将自主研发的最大出力为10kN的磁流变液阻尼器(MRFD)安装在隔震层中心,并选取4条有代表性的远近场地震波,峰值加速度由0.1g~0.9g逐步增大,分别对普通隔震结构、输入电流为0A和1A的被动控制结构以及采用基于位移的拟负刚度(DPNS)控制算法的智能控制结构进行振动台试验。通过对结构响应和阻尼器响应的对比分析,研究拟负刚度控制算法的减震效果和磁流变智能控制系统的耗能特性。结果表明:恒定电流为0A的被动控制可同时降低上部结构反应和隔震层位移,但是减震效果有限;恒定电流为1A的被动控制对隔震层位移降低效果明显,但是在多遇地震及远场地震作用下放大了上部结构反应;DPNS控制可同时降低隔震层位移和多遇、设防地震甚至罕遇地震作用下上部结构的反应,且适应于不同的地震动特性;试验中控制系统存在的时滞效应使得DPNS控制力在多遇、设防地震作用下具有较小值,同时罕遇地震作用下具有较强的耗能能力。  相似文献   

9.
The seismic response of a single–story steel building frame with a smart base isolation system is evaluated. The isolation system consists of sliding bearings combined with an adaptive fluid damper. The damping capacity of the fluid damper can be modulated in real time based on feedback from the earthquake ground motion and superstructure response. The adaptive capabilities of the fluid damper enable the isolation system displacement to be controlled while simultaneously limiting the interstory drift response of the superstructure. This paper concentrates on the development of analytical models of the smart isolation system and control algorithms for operation of the system. In general, the results from numerical simulations demonstrate that, for disparate earthquake ground motions, the smart isolation system is capable of simultaneously limiting both the response of the isolation system and the superstructure.  相似文献   

10.
A vertical ship lift under earthquake excitation may suffer from a whipping effect due to the sudden change of building lateral stiffness at the top of the ship lift towers. This paper proposes a roof magnetorheological (MR) intelligent isolation system to prevent the seismic whipping effect on machinery structures. Theoretically, the dynamic models of MR damper and the mechanical model of ship lift was established, the inverse neural network controlling algorithm was proposed and the fundamental semi-active control equation for the Three-Gorges ship lift where the MR intelligent isolation system was installed was deduced. Experimentally, the experimental model of the ship lift was given, the vibrating table experiment of the MR intelligent isolation system controlling the whipping effect was carried out and the results of the inverse neural network control strategy and passive isolation strategy were compared. In practical aspect, the large-scale MR damper (500 kN) and a sliding support with limited stiffness were designed and fabricated. It was proven that the MR intelligent isolation system with proper control strategy can greatly reduce the seismic whipping effect on the top workshop of the ship lift and be simple and effective enough to be applied to real engineering structures.  相似文献   

11.
The damped-outrigger system has been proposed to improve the performance of conventional outrigger systems in controlling the structural seismic response by increasing the damping and stiffness. The purpose of this study is to demonstrate the effectiveness of using damped-outrigger systems in midrise buildings and provide engineers with a comparison between conventional structural systems such as moment resisting frame (MRF) and buckling-restrained braced frame (BRBF) in proposing the most suitable structural system. In this study, the buckling-restrained brace and viscous damper are adopted as the energy dissipation devices in the damped-outrigger system. A total of 48 midrise numerical models with various building heights and structural systems are analyzed using nonlinear response history analysis and incremental dynamic analyses. The analysis results show that the midrise buildings equipped with a damped-outrigger system with either viscous damper or buckling-restrained brace (BRB) can reach similar and even better seismic performance when compared with the BRBF; it also reduces the structural responses by around 30% for the maximum roof drift and acceleration responses when compared with MRF. The analysis results could provide a reference for structural engineers when selecting suitable lateral force resisting systems for midrise buildings.  相似文献   

12.
13.
设置磁流变阻尼器的高层钢框架支撑体系的地震反应研究   总被引:1,自引:0,他引:1  
磁流变(MR)阻尼器是一种性能十分优秀的减振装置,具有构造简单、调节驱动容易和反应迅速等优点,能有效减小工程结构的地震反应和风振反应,具有广阔的应用前景。本文研究了安装MR阻尼器的高层钢结构框架支撑体系的抗震性能。在介绍了MR阻尼器力学模型的基础上,推导了MR阻尼器-支撑框架系统的地震反应基本方程,并且采用了基于最优主动控制力的“开关-耗能”半主动控制策略对MR阻尼器实施控制。应用本文方法对一栋20层的高层钢结构进行了模拟计算,结果表明:安装了MR阻尼器的框架支撑体系的抗震性能明显优于纯框架支撑体系,是一种简单、方便和有效的减振系统。  相似文献   

14.
某四塔连体结构在顶部通过300m长的空中连廊在高度235m处连接,形成复杂的多塔楼高位连体结构。为减小地震作用下的结构响应及结构构件内力,采用被动控制方案,空中连廊与四栋塔楼的连接节点采用摩擦摆隔震支座,并设置阻尼器进行耗能与限位。为检验四塔连体高位减(隔)震结构的抗震性能,进行了1/25缩尺模型的模拟地震振动台试验研究。结果表明:采用被动消能减震的四塔连体结构满足抗震设计要求;摩擦摆隔震支座与黏滞阻尼器产生了良好的隔震与消能减震效果,空中连廊构件在罕遇地震作用下保持弹性工作状态。  相似文献   

15.
双段消能摇摆结构体系是通过两段串联的摇摆结构,控制主体结构各楼层在地震作用下均匀变形,抑制薄弱层的产生,也降低了主体结构对于摇摆结构的刚度需求。在变形集中的摇摆结构底部布设位移型阻尼器,可进一步提高结构的抗震性能。但是该体系存在承载力较低、上段结构地震反应相对较大的不足。基于此,提出了消能摇摆高位隔震结构体系,即在双段消能摇摆结构体系的分段楼层位置增设劲性支撑,以抑制上段结构的摇摆运动,提高结构的刚度与承载力;同时,下段结构允许发生摇摆,发挥高位隔震层的作用。以消能摇摆高位隔震结构体系为研究对象,分析对比了其他三种结构体系:传统支撑框架结构体系、双段消能摇摆结构体系、不含位移型阻尼器的摇摆高位隔震结构体系。采用OpenSees软件建立了弹塑性有限元分析模型,对四种结构体系进行弹塑性抗震分析和增量动力时程分析。研究表明,消能摇摆高位隔震结构体系的刚度与承载力较高,地震反应较小,抗震性能与抗倒塌性能良好。在摇摆结构分段位置加设劲性支撑层,可以抑制上段结构在地震作用下的变形,并发挥下段摇摆结构的隔震作用。布设于分段位置与摇摆结构底部的阻尼器,可以充分消耗地震能量,提高结构体系的抗震性能。  相似文献   

16.
本文对结构抗震控制的主动控制、被动控制和半主动控制等三类控制措施的控制效果进行了比较与分析。文中以瞬时最优控制算法为基础 ,推导了分别安装有三类结构抗震控制措施的结构的运动方程 ,得到了三类结构抗震控制措施在时域内的控制算法和控制律 ,并依据等效最优控制算法对不同控制参数进行了优化设计。通过对一受El Centro波激励的 36层高层建筑结构实施三类抗震控制的数值仿真分析 ,比较了三类结构抗震控制措施的控制效果 ,结果表明主动控制效果最好 ,半主动控制效果次之 ,而被动控制效果最差 ;半主动控制的控制效果虽比主动控制差一些 ,但其不需外界能源 ,控制可靠性高 ,易于在工程中实现。由此可得出结论 ,半主动控制极具发展前途 ,可在工程中推广应用  相似文献   

17.
建筑结构半主动控制振动台试验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
本文讨论了作者进行的建筑结构半主动振动控制试验,用以检验主动变刚度/阻尼(AVS/D)控制系统犤6犦及瞬时最优半主动控制方法的有效性与实用性。试验结果表明:对比于对应的被动控制方式,AVS/D半主动控制系统不但能有效地控制结构在地震作用下的位移和加速度响应,而且克服了其它半主动控制系统存在的负面控制影响,对不同地震激励具有很强的控制鲁棒性,而且实现简单、易行,从而为进一步深入研究与应用于工程实际提供了试验依据。  相似文献   

18.
Fragility curves are used to represent the probabilities that the structural damages, under various level of seismic excitation, exceed specified damage states by means of earthquake intensity–damage relations. In this study, the fragility curves have been developed for comparative seismic evaluation of several retrofitting measures by incorporation of fluid viscous (VS) dampers applied to a representative high-rise reinforced concrete (R/C) office building located in Istanbul. In the retrofitting strategies considered, similar type of VS dampers was used and designed to provide the structure with three different effective damping ratios of 10%, 15%, and 20%. In the fragility analysis, a set of 240 artificially generated earthquake ground motions compatible with the design spectrum selected to represent the variability in ground motion was employed to study nonlinear dynamic responses of the structures before and after retrofit. Four damage states: slight, moderate, major, and collapse were defined to express the condition of damage. The fragility curves in this study are represented by lognormal distribution functions with two parameters and developed as a function of peak ground acceleration (PGA), spectral acceleration (Sa), spectral displacement (Sd). Comparison of the fragility curves indicated that the VS dampers were very effective in attenuating seismic structural response under various earthquake ground motions. It was also found that a two-fold reduction in the probability of exceeding damage states might be achieved by introducing passive VS damper systems.  相似文献   

19.
崔家安 《山西建筑》2007,33(29):73-74
对某标志塔进行了动力特性分析,应用半主动质量驱动器(MR-TMD)系统,采用Matlab软件编制了半主动减振控制分析程序,分析比较了在模拟脉动风荷载作用下无控、被动TMD和MR-TMD控制下塔的响应,仿真结果表明,MR-TMD作为一种半主动质量驱动器能有效降低标志塔的风振反应。  相似文献   

20.
This paper introduces a seismic energy dissipation technology—viscous damping outrigger (VDO)—which is composed of outrigger truss and viscous damper. The viscous damper is set up vertically at the end of outrigger truss, which is an innovative and high‐efficiency arrangement. VDO can fully utilize the characteristic of structural lateral deformation of super high‐rise buildings to increase the efficiency of viscous dampers for enhancing structural security, improving seismic performance, and reducing construction expenditure. In this paper, working principle and seismic energy dissipating mechanism of VDO are explained firstly. Then, the influence of viscous damper parameters on energy dissipation efficiency is studied. Next, the optimal position of VDO in a super high‐rise building is analyzed in detail. Lastly, the application of VDO in structural seismic design of a super high‐rise building in China will be clearly verified based on their feasibility, economy, and safety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号