首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ferritin naturally exists in most organisms and can specifically recognize the transferrin 1 receptor (TfR1), which is generally highly expressed on various types of tumor cells. The pH dependent reversible assembling and disassembling property of ferritin renders it as a suitable candidate for encapsulating a variety of anticancer drugs and imaging probes. Ferritins external surface is chemically and genetically modifiable which can serve as attachment site for tumor specific targeting peptides or moieties. Moreover, the biological origin of these protein cages makes it a biocompatible nanocarrier that stabilizes and protects the enclosed particles from the external environment without provoking any toxic or immunogenic responses. Recent studies, further establish ferritin as a multifunctional nanocarrier for targeted cancer chemotherapy and phototherapy. In this review, we introduce the favorable characteristics of ferritin drug carriers, the specific targeted surface modification and a multifunctional nanocarriers combined chemotherapy with phototherapy for tumor treatment. Taken together, ferritin is a potential ideal base of engineered nanoparticles for tumor therapy and still needs to explore more on its way.  相似文献   

2.
Using nanoparticles to carry and delivery anticancer drugs holds much promise in cancer therapy, but nanoparticles per se are lacking specificity. Active targeting, that is, using specific ligands to functionalize nanoparticles, is attracting much attention in recent years. Aptamers, with their several favorable features like high specificity and affinity, small size, very low immunogenicity, relatively low cost for production, and easiness to store, are one of the best candidates for the specific ligands of nanoparticle functionalization. This review discusses the benefits and challenges of using aptamers to functionalize nanoparticles for active targeting and especially presents nearly all of the published works that address the topic of using aptamers to functionalize nanoparticles for targeted drug delivery and cancer therapy.  相似文献   

3.
Lipid based delivery system is gaining significant attention of researchers working on the development of novel formulations for improved therapeutic efficacy and safety of drugs. Topical drug delivery is needed in treatment of skin, eyes, rectum, vagina disorders and systemic disorders having skin manifestations. Lipid nanocarriers have widespread application in the topical drug delivery due to the biocompatible, biodegradable, nontoxic and nonirritating nature of the lipid. Microemulsion and nanoemulsion contain lipids in the nanosize range which can lead to penetration of drug to the deeper skin layers. Solid lipid nanoparticles and nanolipid carriers act by forming an occlusive layer on the skin leading to increased hydration and penetration of the drug. Vesicular carriers such as liposomes, niosomes, ultradeformable vesicles, cubosomes etc. are also reported to enhance the penetration of the entrapped drugs in deeper layers of skin. These carrier systems are mainly composed of lipids, surfactants, and co-surfactants which are safe and quite acceptable by regulatory authorities. The present review article focuses on different types of lipid nanocarriers used in topical drug delivery, their advantages and limitations, mechanism of enhanced penetration, work reported in the related literature, characterization tests and their safety and toxicity concerns.  相似文献   

4.
A variety of strategies and carrier molecules have been used to direct therapeutic agents to tumor sites. The incorporation of a specific targeting moiety to drug carrier may result in active drug uptake by malignant cells. Carbohydrates are important mediators of cell–cell recognition events and have been implicated in related processes such as cell signaling regulation, cellular differentiation, and immune response. The biocompatibility of carbohydrates and their ability to be specifically recognized by cell-surface receptors indicate their potential utility as ligands in targeted drug delivery for therapeutic applications. Yet, carbohydrates are not ideal targeting ligands because they are difficult to synthesize, bind weakly to carbohydrate receptors, and are prone to suffer from enzyme degradation due to labile glycosidic linkages. This review describes the design and development of HPMA-based biomedical copolymers to facilitate the selective delivery of drugs to tumor tissues via carbohydrate–endogenous lectin interactions. Various carbohydrate-decorated HPMA copolymer–drug conjugates are presented and the application of the copolymers for drug delivery is discussed. Current efforts to increase the affinity of carbohydrate ligands for their target receptors through multivalent display are also discussed. These novel HPMA copolymer carbohydrate conjugates hold promise as clinically relevant drug delivery systems for cancer therapy.  相似文献   

5.
Metal-organic frameworks (MOFs) formed by coordination between metal ions or clusters and organic bridging ligands possess great potential for biomedicine applications, given their high biocompatibility and biodegradability. Compared with the traditional three-dimensional (3D) MOFs, two-dimensional (2D) MOFs with sheet-like morphologies exhibit unique properties. In this study, a nanoscale 2D leaf-shaped MOF (NZIF−L) was synthesized via coordination self-assembly between 2-methylimidazole (Hmim) and Zn2+ with subsequent morphology and size control. The fabricated NZIF−L is cytocompatible and can be quickly endocytosed, which makes it an excellent cargo carrier. Subsequent to loading with either doxorubicin (DOX) or 4,4′-(1,2-diphenylvinyl)-1,2-di-(phenylcarboxylic acid) (TCPE), the respectively obtained DOX@NZIF−L and TCPE@NZIF−L showed promise for killing and imaging cancer cells.  相似文献   

6.
Anti-CD133 monoclonal antibody (Ab)-conjugated poly(lactide-co-glycolide) (PLGA) nanocarriers, for the targeted delivery of oxaliplatin (OXA) and superparamagnetic nanoparticles (IO-OA) to colorectal cancer cells (CaCo-2), were designed, synthesized, characterized, and evaluated in this study. The co-encapsulation of OXA and IO-OA was achieved in two types of polymeric carriers, namely, PLGA and poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) by double emulsion. PLGA_IO-OA_OXA and PEGylated PLGA_IO-OA_OXA nanoparticles displayed a comparable mean diameter of 207 ± 70 nm and 185 ± 119 nm, respectively. The concentration of the released OXA from the PEGylated PLGA_IO-OA_OXA increased very rapidly, reaching ~100% release after only 2 h, while the PLGA_IO-OA_OXA displayed a slower and sustained drug release. Therefore, for a controlled OXA release, non-PEGylated PLGA nanoparticles were more convenient. Interestingly, preservation of the superparamagnetic behavior of the IO-OA, without magnetic hysteresis all along the dissolution process, was observed. The non-PEGylated nanoparticles (PLGA_OXA, PLGA_IO-OA_OXA) were selected for the anti-CD133 Ab conjugation. The affinity of Ab-coated nanoparticles for CD133-positive cells was examined using fluorescence microscopy in CaCo-2 cells, which was followed by a viability assay.  相似文献   

7.
8.
Chemotherapy is still the most direct and effective means of cancer therapy nowadays. The proposal of drug delivery systems (DDSs) has effectively improved many shortcomings of traditional chemotherapy drugs. The technical support of DDSs lies in their excellent material properties. Polysaccharides include a series of natural polymers, such as chitosan, hyaluronic acid, and alginic acid. These polysaccharides have good biocompatibility and degradability, and they are easily chemical modified. Therefore, polysaccharides are ideal candidate materials to construct DDSs, and their clinical application prospects have been favored by researchers. On the basis of versatile types of polysaccharides, this review elaborates their applications from strategic design to cancer therapy. The construction and modification methods of polysaccharide-based DDSs are specifically explained, and the latest research progress of polysaccharide-based DDSs in cancer therapy are also summarized. The purpose of this review is to provide a reference for the design and preparation of polysaccharide-based DDSs with excellent performance.  相似文献   

9.
RNA interference (RNAi) has emerged as a powerful tool for studying target identification and holds promise for the development of therapeutic gene silencing. Recent advances in RNAi delivery and target selection provide remarkable opportunities for translational medical research. The induction of RNAi relies on small silencing RNAs, which affect specific messenger RNA (mRNA) degradation. Two types of small RNA molecules, small interfering RNAs (siRNAs) and microRNAs (miRNAs), have a central function in RNAi technology. The success of RNAi-based therapeutic delivery may be dependent upon uncovering a delivery route, sophisticated delivery carriers, and nucleic acid modifications. Lung cancer is still the leading cause of cancer death worldwide, for which novel therapeutic strategies are critically needed. Recently, we have reported a novel platform (PnkRNA™ and nkRNA®) to promote naked RNAi approaches through inhalation without delivery vehicles in lung cancer xenograft models. We suggest that a new class of RNAi therapeutic agent and local drug delivery system could also offer a promising RNAi-based strategy for clinical applications in cancer therapy. In this article, we show recent strategies for an RNAi delivery system and suggest the possible clinical usefulness of RNAi-based therapeutics for lung cancer treatment.  相似文献   

10.
In this study, actively-targeted (CD44-receptors) and dual stimuli (pH/redox)-responsive lipid–polymer nanoparticles were proposed as a delivery vehicle of doxorubicin hydrochloride in triple negative breast cancer cell lines. A phosphatidylcholine lipid film was hydrated with a solution of oxidized hyaluronic acid and doxorubicin, chosen as model drug, followed by a crosslinking reaction with cystamine hydrochloride. The obtained spherical nanoparticles (mean diameter of 30 nm) were found to be efficiently internalized in cancer cells by a receptor-mediated endocytosis process, and to modulate the drug release depending on the pH and redox potential of the surrounding medium. In vitro cytotoxicity assays demonstrated the safety and efficacy of the nanoparticles in enhancing the cytotoxic effect of the free anticancer drug, with the IC50 values being reduced by two and three times in MDA-MB-468 and MDA-MB-231, respectively. The combination of self-assembled phospholipid molecules with a polysaccharide counterpart acting as receptor ligand, and stimuli-responsive chemical moieties, was carried out on smart multifunctional nanoparticles able to actively target breast cancer cells and improve the in vitro anticancer activity of doxorubicin.  相似文献   

11.
Although anti-angiogenic agents offer great therapeutic potential, preclinical and clinical studies suggest that these agents, used as monotherapies, have a delayed onset of activity and may have only limited effects on advanced malignancies. Multimodality targeted polymer therapeutics that include anti-angiogenic agents and chemotherapeutics offer the potential for improved efficacy and diminished toxicity in the treatment of cancer and other angiogenesis-dependent diseases. We have recently designed and characterized novel combined anti-angiogenic and antitumor polymer–drug conjugates that target both the tumor and its microenvironment. These conjugates include combined anti-angiogenic and chemotherapeutic drugs, such as TNP-470 and paclitaxel, respectively. Several conjugates also incorporate bisphosphonates as targeting moieties for bone metastases and osteosarcomas or RGD peptidomimetics that target integrins overexpressed on tumor endothelial cells and several tumor cells. Using molecular imaging techniques, we have successfully established dormant and fast-growing tumor mouse models to intravitally non-invasively follow-up tumor progression and response to novel polymer therapeutics. Our results point at our polymer therapeutics as novel bi-specific conjugates targeting both the tumor epithelial and endothelial compartments, warranting their use on a wide spectrum of primary as well as metastatic tumors. The use of these novel architectures will potentially shed light on the molecular mechanisms underlying tumor dormancy and hopefully transform cancer into a chronically-manageable disease.  相似文献   

12.
(1) Background: The size and surface charge are the most significant parameters of nanocarriers that determine their efficiency and potential application. The poor cell uptake of encapsulated drugs is the main limitation in anticancer treatment. The well-defined properties of nanocarriers will enable to target specific tissue and deliver an active cargo. (2) Methods: In the current study, poly(D,L -lactide) (PLA) nanocarriers loaded with curcumin (CUR) and differing surface charge were evaluated for transport efficacy in combination with electroporation (EP) in dependence on the type of cells. The obtained CUR-loaded nanoparticles with diameters ranging from 195 to 334 nm (derived from dynamic light scattering (DLS)) were characterized by atomic force microscopy (AFM) (morphology and shape) and Doppler electrophoresis (ζ-potential) as well as UV-vis spectroscopy (CUR encapsulation efficiency (about 90%) and photobleaching rate). The drug delivery properties of the obtained PLA nanocarriers enhanced by electroporation were assessed in human colon cancer cells (LoVo), excitable normal rat muscle cells (L6), and free of voltage-gated ion channels cells (CHO-K1). CLSM studies, viability, and ROS release were performed to determine the biological effects of nanocarriers. (3) Results: The highest photodynamic activity indicated anionic nanocarriers (1a) stabilized by C12(COONa)2 surfactant. Nanocarriers were cytotoxic for LoVo cells and less cytotoxic for normal cells. ROS release increased in cancer cells with the increasing electric field intensity, irradiation, and time after EP. Muscle L6 cells were less sensitive to electric pulses. (4) Conclusions: EP stimulation for CUR-PLA nanocarriers transport was considered to improve the regulated and more effective delivery of nanosystems differing in surface charge.  相似文献   

13.
Nutrient transporters have attracted significant attention for their promising application in biomimetic delivery. Due to the active consumption of nutrients, cancer cells generally overexpress nutrient transporters to meet their increased need for energy and materials. For example, albumin‐binding proteins (ABPs) are highly overexpressed in malignant cells, stromal cells, and tumor vessel endothelial cells responsible for albumin uptake. ABP (e.g., SPARC) is a promising target for tumor‐specific drug delivery, and albumin has been widely used as a biomimetic delivery carrier. Apart from the transportation function, ABPs are closely associated with neoplasia, invasion, and metastasis. Herein, a summary of the roles of ABP in cancer progression and the application of albumin‐based biomimetic tumor‐targeted delivery through the ABP pathway is presented.  相似文献   

14.
Breast cancer is one of the most common types of cancer among women globally. It is caused by mutations in the estrogen/progesterone receptors and conventional treatment methods are commonly utilized. About 70–80 percent of individuals with the early-stage non-metastatic disease may be cured. Conventional treatment is far less than the optimal ratio, as demonstrated through the high mortality rate of women with this cancer. However, conventional treatment methods like surgery, radiotherapy, and chemotherapy are not as effective as expected and lead to concerns about low bioavailability, low cellular uptake, emerging resistance, and adverse toxicities. A nanomedicine-based approach is a promising alternative for breast cancer treatment. The present era is witnessing rapid advancements in nanomedicine as a platform for investigating novel therapeutic applications and modern intelligent healthcare management strategies. This paper focuses on nanomedicine-based therapeutic interventions that are becoming more widely accepted for improving treatment effectiveness and reducing undesired side effects in breast cancer patients. By evaluating the state-of-the-art tools and taking the challenges involved into consideration, various aspects of the proposed nano-enabled therapeutic approaches have been discussed in this review.  相似文献   

15.
Macrophages are a promising target for drug delivery to influence macrophage-associated processes in the body, namely due to the presence of resistant microorganisms in macrophages. In this work, a series of mannosylated carriers based on mannan, polyethylenimine (PEI) and cyclodextrin (CD) was synthesized. The molecular architecture was studied using FTIR and 1H NMR spectroscopy. The particle size, from small 10–50 nm to large 500 nm, depending on the type of carrier, is potentially applicable for the creation of various medicinal forms: intravenous, oral and inhalation. Non-specific capture by cells with a simultaneous increase in selectivity to CD206+ macrophages was achieved. ConA was used as a model mannose receptor, binding galactosylated (CD206 non-specific) carriers with constants of the order of 104 M−1 and mannosylated conjugates of 106–107 M−1. The results of such primary “ConA-screening” of ligands are in a good agreement in terms of the comparative effectiveness of the interaction of ligands with the CD206+ macrophages: non-specific (up to 10%) absorption of highly charged and small particles; weakly specific uptake of galactosylated polymers (up to 50%); and high affine capture (more than 70–80%) of the ligands with grafted trimannoside was demonstrated using the cytometry method. Double and multi-complexes of antibacterials (moxifloxacin with its adjuvants from the class of terpenoids) were proposed as enhanced forms against resistant pathogens. In vivo pharmacokinetic experiments have shown that polymeric carriers significantly improve the efficiency of the antibiotic: the half-life of moxifloxacin is increased by 2–3 times in conjugate-loaded forms, bio-distribution to the lungs in the first hours after administration of the drug is noticeably greater, and, after 4 h of observation, free moxifloxacin was practically removed from the lungs of rats. Although, in polymer systems, its content is significant—1.2 µg/g. Moreover, the importance of the covalent crosslinking carrier with mannose label was demonstrated. Thus, this paper describes experimental, scientifically based methods of targeted drug delivery to macrophages to create enhanced medicinal forms.  相似文献   

16.
This paper describes the investigation and development of a novel magnetic drug delivery nanosystem (labeled as MO-20) for cancer therapy. The drug employed was oncocalyxone A (onco A), which was isolated from Auxemma oncocalyx, an endemic Brazilian plant. It has a series of pharmacological properties: antioxidant, cytotoxic, analgesic, anti-inflammatory, antitumor and antiplatelet. Onco A was associated with magnetite nanoparticles in order to obtain magnetic properties. The components of MO-20 were characterized by XRD, FTIR, TGA, TEM and Magnetization curves. The MO-20 presented a size of about 30 nm and globular morphology. In addition, drug releasing experiments were performed, where it was observed the presence of the anomalous transport. The results found in this work showed the potential of onco A for future applications of the MO-20 as a new magnetic drug release nanosystem for cancer treatment.  相似文献   

17.
Recently, nano-based cancer therapeutics have been researched and developed, with some nanomaterials showing anticancer properties. When it comes to cancer treatment, graphene quantum dots (GQDs) contain the ability to generate 1O2, a reactive oxidative species (ROS), allowing for the synergistic imaging and photodynamic therapy (PDT) of cancer. However, due to their small particle size, GQDs struggle to remain in the target area for long periods of time in addition to being poor drug carriers. To address this limitation of GQDs, hollow mesoporous silica nanoparticles (hMSNs) have been extensively researched for drug delivery applications. This project investigates the utilization and combination of biomass-derived GQDs and Stöber silica hMSNs to make graphene quantum dots-hollow mesoporous silica nanoparticles (GQDs-hMSNs) for fluorescent imaging and dual treatment of cancer via drug delivery and photodynamic therapy (PDT). Although the addition of hMSNs made the newly synthesized nanoparticles slightly more toxic at higher concentrations, the GQDs-hMSNs displayed excellent drug delivery using fluorescein (FITC) as a mock drug, and PDT treatment by using the GQDs as a photosensitizer (PS). Additionally, the GQDs retained their fluorescence through the surface binding to hMSNs, allowing them to still be used for cell-labeling applications.  相似文献   

18.
Aptamers offer a great opportunity to develop innovative drug delivery systems that can deliver cargos specifically into targeted cells. In this study, a chimera consisting of two aptamers was developed to deliver doxorubicin into cancer cells and release the drug in cytoplasm in response to adenosine-5′-triphosphate (ATP) binding. The chimera was composed of the AS1411 anti-nucleolin aptamer for cancer cell targeting and the ATP aptamer for loading and triggering the release of doxorubicin in cells. The chimera was first produced by hybridizing the ATP aptamer with its complementary DNA sequence, which is linked with the AS1411 aptamer via a poly-thymine linker. Doxorubicin was then loaded inside the hybridized DNA region of the chimera. Our results show that the AS1411–ATP aptamer chimera was able to release loaded doxorubicin in cells in response to ATP. In addition, selective uptake of the chimera into cancer cells was demonstrated using flow cytometry. Furthermore, confocal laser scanning microscopy showed the successful delivery of the doxorubicin loaded in chimeras to the nuclei of targeted cells. Moreover, the doxorubicin-loaded chimeras effectively inhibited the growth of cancer cell lines and reduced the cytotoxic effect on the normal cells. Overall, the results of this study show that the AS1411–ATP aptamer chimera could be used as an innovative approach for the selective delivery of doxorubicin to cancer cells, which may improve the therapeutic potency and decrease the off-target cytotoxicity of doxorubicin.  相似文献   

19.
The authors report a feasible simple method to fabricate two kinds of micellar nanocarriers (MPEG-SS-CPT/DOX) with polyethylene glycol (PEG) based on the self-assembly of glutathione (GSH)-responsive amphiphilic PEGylated polymers (MPEG-SS-CPT) in free doxorubicin (DOX) solution, which could carry two anticancer drugs of camptothecin (CPT) and DOX toward cancer cells together. In in vitro release studies, the micelles of MPEG-SS-CPT/DOX could undergo the triggered disassembly to release CPT and DOX under GSH stimulus much faster than without GSH. Furthermore, the MPEG-SS-CPT nanocarriers could release CPT with no change of its original structure after degradation. From the experiments of loading and release of drugs, the cell viability assay, cellular uptake, and flow cytometry studies, it was found that the fibrous micelles modified by PEG with a molecular weight of 350 had greater potential in the field of drug delivery than the other with a molecular weight of 1900.  相似文献   

20.
Polypeptides have attracted considerable attention in recent decades due to their inherent biodegradability and biocompatibility. This mini-review focuses on various ways to synthesize polypeptides, as well as on their biomedical applications as anti-tumor drug carriers over the past five years. Various approaches to preparing polypeptides are summarized, including solid phase peptide synthesis, recombinant DNA techniques, and the polymerization of activated amino acid monomers. More details on the polymerization of specifically activated amino acid monomers, such as amino acid N-carboxyanhydrides (NCAs), amino acid N-thiocarboxyanhydrides (NTAs), and N-phenoxycarbonyl amino acids (NPCs), are introduced. Some stimuli-responsive polypeptide-based drug delivery systems that can undergo different transitions, including stability, surface, and size transition, to realize a better anti-tumor effect, are elaborated upon. Finally, the challenges and opportunities in this field are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号