首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 133 毫秒
1.
Little is known about the effects on hyaluronan (HA) metabolism of UVA radiation. This study demonstrates that the secretion of HA by human dermal fibroblasts (HDFs) is downregulated by UVA, accompanied by the down- and upregulation of mRNA and protein levels of the HA-synthesizing enzyme (HAS2) and the HA-degrading protein, HYaluronan Binding protein Involved in HA Depolymerization(HYBID), respectively. Signaling analysis revealed that the exposure distinctly elicits activation of the p38/MSK1/CREB/c-Fos/AP-1 axis, the JNK/c-Jun axis, and the p38/ATF-2 axis, but downregulates the phosphorylation of NF-kB and JAK/STAT3. A signal inhibition study demonstrated that the inhibition of p38 significantly abrogates the UVA-accentuated mRNA level of HYBID. Furthermore, the inhibition of STAT3 significantly downregulates the level of HAS2 mRNA in non-UVA exposed HDFs. Analysis using siRNAs demonstrated that transfection of ATF-2 siRNA but not c-Fos siRNA abrogates the increased protein level of HYBID in UVA-exposed HDFs. An inhibitor of protein tyrosine phosphatase but not of protein serine/threonine phosphatase restored the diminished phosphorylation level of STAT3 at Tyr 705, accompanied by a significant abolishing effect on the decreased mRNA expression level of HAS2. Silencing with a protein tyrosine phosphatase PTP-Meg2 siRNA revealed that it abrogates the decreased phosphorylation of STAT3 at Tyr 705 in UVA-exposed HDFs. These findings suggest that the UVA-induced decrease in HA secretion by HDFs is attributable to the down- and upregulation of HAS2 and HYBID expression, respectively, changes that are mainly ascribed to the inactivated signaling of the STAT3 axis due to the activated tyrosine protein phosphatase PTP-Meg2 and the activated signaling of the p38/ATF2 axis, respectively.  相似文献   

2.
目的研究人参皂苷Rh2(G-Rh2)对人胃癌细胞SGC-7901的影响。方法采用MTT法检测G-Rh2对SGC-7901细胞存活率的影响;流式细胞分析法检测凋亡小体的含量;免疫印迹技术及体外Caspase-3/-7活力测定方法检测Caspase的激活状态。结果G-Rh2对SGC-7901细胞生长有明显的抑制作用,且呈量-效关系,IC50为9.3μg/ml。7.5μg/mlG-Rh2作用SGC-7901细胞24h,凋亡细胞数量为6.97%。7.5μg/mlG-Rh2作用SGC-7901细胞20h,出现多聚(ADP-核糖)聚合酶[poly(ADP-ribose)polymerase,PARP]断裂,Caspase-3/-7活力开始出现,并随作用时间的延长而增强。结论G-Rh2诱导Caspase参与SGC-7901细胞凋亡。  相似文献   

3.
(20S) ginsenoside Rh2 (G-Rh2), a major bioactive metabolite of ginseng, effectively inhibits the survival and proliferation of human liver cancer cells. However, its molecular targets and working mechanism remain largely unknown. Excitingly, we screened out heat shock protein 90 alpha (HSP90A), a key regulatory protein associated with liver cancer, as a potential target of (20S) G-Rh2 by phage display analysis and mass spectrometry. The molecular docking and thermal shift analyses demonstrated that (20S) G-Rh2 directly bound to HSP90A, and this binding was confirmed to inhibit the interaction between HSP90A and its co-chaperone, cell division cycle control protein 37 (Cdc37). It is well-known that the HSP90A-Cdc37 system aids in the folding and maturation of cyclin-dependent kinases (CDKs). As expected, CDK4 and CDK6, the two G0-G1 phase promoting kinases as well as CDK2, a key G1-S phase transition promoting kinase, were significantly downregulated with (20S) G-Rh2 treatment, and these downregulations were mediated by the proteasome pathway. In the same condition, the cell cycle was arrested at the G0-G1 phase and cell growth was inhibited significantly by (20S) G-Rh2 treatment. Taken together, this study for the first time reveals that (20S) G-Rh2 exerts its anti-tumor effect by targeting HSP90A and consequently disturbing the HSP90A-Cdc37 chaperone system. HSP90A is frequently overexpressed in human hepatoma cells and the higher expression is closely correlated to the poor prognosis of liver cancer patients. Thus, (20S) G-Rh2 might become a promising alternative drug for liver cancer therapy.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
We previously showed that a synthetic peptide (S2-P) corresponding to a portion of the human syndecan-2 (SDC2) sequence can bind to the pro-domain of matrix metalloproteinase-7 (MMP-7) to inhibit colon cancer activities. Since S2-P had a relatively weak binding affinity for the MMP-7 pro-domain, we herein modified the amino acid sequence of S2-P to improve the anticancer potential. On the basis of the interaction structure of S2-P and MMP-7, four peptides were generated by replacing amino acids near Tyr 51, which is critical for the interaction. The SDC2-mimetic peptides harboring an Ala-to-Asp substitution at the C-terminal side of Tyr 51 (S2-D) or with an Ala-to-Phe substitution at the N-terminal side of Tyr 51 and an Ala-to-Asp substitution at the C-terminal side of Tyr 51 (S2-FE) showed improved interaction affinities for the MMP-7 pro-domain. Compared to S2-P, S2-FE was better able to inhibit the SDC2–MMP-7 interaction, the cell surface localization of MMP-7, the gelatin degradation activity of MMP-7, and the cancer activities (cell migration, invasion, and colony-forming activity) of human HCT116 colon cancer cells in vitro. In vivo, S2-FE inhibited the primary tumor growth and lung metastasis of CT26 mouse colon cancer cells in a xenograft mouse model. Together, these data suggest that S2-FE could be useful therapeutic anticancer peptides for colon cancer.  相似文献   

13.
B cell malignancies are, despite the development of targeted therapy in a certain percentage of the patients still a chronic disease with relapses, requiring multiple lines of therapy. Regimens that include platinum-based drugs provide high response rates in different B cell lymphomas, high-risk chronic lymphocytic leukemia (CLL), and devastating complication of CLL, Richter’s syndrome. The aim of this study was to explore the potential antitumor activity of previously synthetized platinum(IV) complex with alkyl derivatives of thyosalicilc acid, PtCl2(S-pr-thiosal)2, toward murine BCL1 cells and to delineate possible mechanisms of action. The PtCl2(S-pr-thiosal)2 reduced the viability of BCL1 cells in vitro but also reduced the growth of metastases in the leukemia lymphoma model in BALB/c mice. PtCl2(S-pr-thiosal)2 induced apoptosis, inhibited proliferation of BCL1 cells, and induced cell cycle disturbance. Treatment of BCL1 cells with PtCl2(S-pr-thiosal)2 inhibited expression of cyclin D3 and cyclin E and enhanced expression of cyclin-dependent kinase inhibitors p16, p21, and p27 resulting in cell cycle arrest in the G1 phase, reduced the percentage of BCL1 cells in the S phase, and decreased expression of Ki-67. PtCl2(S-pr-thiosal)2 treatment reduced expression of phosphorylated STAT3 and downstream-regulated molecules associated with cancer stemness and proliferation, NANOG, cyclin D3, and c-Myc, and expression of phosphorylated NFκB in vitro and in vivo. In conclusion, PtCl2(S-pr-thiosal)2 reduces STAT3 and NFκB phosphorylation resulting in inhibition of BCL1 cell proliferation and the triggering of apoptotic cell death.  相似文献   

14.
Distinct membrane receptors activate platelets by Src-family-kinase (SFK)-, immunoreceptor-tyrosine-based-activation-motif (ITAM)-dependent stimulation of spleen tyrosine kinase (Syk). Recently, we reported that platelet activation via glycoprotein (GP) VI or GPIbα stimulated the well-established Syk tyrosine (Y)-phosphorylation, but also stoichiometric, transient protein kinase C (PKC)-mediated Syk serine(S)297 phosphorylation in the regulatory interdomain-B, suggesting possible feedback inhibition. The transient nature of Syk S297 phosphorylation indicated the presence of an unknown Syk pS297 protein phosphatase. In this study, we hypothesize that the S-protein phosphatase 2A (PP2A) is responsible for Syk pS297 dephosphorylation, thereby affecting Syk Y-phosphorylation and activity in human washed platelets. Using immunoblotting, we show that specific inhibition of PP2A by okadaic acid (OA) alone leads to stoichiometric Syk S297 phosphorylation, as analyzed by Zn2+-Phos-tag gels, without affecting Syk Y-phosphorylation. Pharmacological inhibition of Syk by PRT060318 or PKC by GF109203X only minimally reduced OA-induced Syk S297 phosphorylation. PP2A inhibition by OA preceding GPVI-mediated platelet activation induced by convulxin extended Syk S297 phosphorylation but inhibited Syk Y-phosphorylation. Our data demonstrate a novel biochemical and functional link between the S-protein phosphatase PP2A and the Y-protein kinase Syk in human platelets, and suggest that PP2A represents a potential enhancer of GPVI-mediated Syk activity caused by Syk pS297 dephosphorylation.  相似文献   

15.
16.
17.
The enzyme pyruvate kinase M2 (PKM2) plays a major role in the switch of tumor cells from oxidative phosphorylation to aerobic glycolysis, one of the hallmarks of cancer. Different allosteric inhibitors or activators and several posttranslational modifications regulate its activity. Head and neck squamous cell carcinoma (HNSCC) is a common disease with a high rate of recurrence. To find out more about PKM2 and its modulation in HNSCC, we examined a panel of HNSCC cells using real-time cell metabolic analysis and Western blotting with an emphasis on phosphorylation variant Tyr105 and two reagents known to impair PKM2 activity. Our results show that in HNSCC, PKM2 is commonly phosphorylated at Tyrosine 105. Its levels depended on tyrosine kinase activity, emphasizing the importance of growth factors such as EGF (epidermal growth factor) on HNSCC metabolism. Furthermore, its correlation with the expression of CD44 indicates a role in cancer stemness. Cells generally reacted with higher glycolysis to PKM2 activator DASA-58 and lower glycolysis to PKM2 inhibitor Compound 3k, but some were more susceptible to activation and others to inhibition. Our findings emphasize the need to further investigate the role of PKM2 in HNSCC, as it could aid understanding and treatment of the disease.  相似文献   

18.
19.
20.
Denys A  Hichami A  Maume B  Khan NA 《Lipids》2001,36(8):813-818
Phosphorylation of extracellular signal-regulated kinases (ERK1/ERK2) has been implicated in cell proliferation of mammalian cells. In the present study, we investigated the role of docosahexaenoic acid (DHA) in the modulation of ERK1/ERK2 phosphorylation, stimulated either with phorbol 12-myristate 13-acetate (PMA) or transforming growth factor-alpha (TGFα) in NIH/3T3 cells. We observed that both PMA and TGFα induced ERK1/ERK2 phosphorylation within 5 min of stimulation. PMA acts upstream of MEK and via activation of protein kinase C (PKC), as GF109203X, a potent PKC inhibitor, and U0126, a MEK inhibitor, abolished its actions on ERK1/ERK2 phosphorylation. TGFα did not act via PKC because GF109203X failed to curtail the degree of ERK1/ERK2 phosphorylation in these cells. DHA alone failed to induce the phosphorylation of these mitogen-activated protein (MAP) kinases; however, this fatty acid significantly curtailed the PMA-but not TGFα-induced MAP kinase enzyme activity and phosphorylation in NIH/3T3 cells. Furthermore, we observed that DHA significantly inhibited PMA-induced translocation of two PKC isoforms, PKCα and PKCε, from cytosol to plasma membrane. Interestingly, DHA failed to inhibit the PMA-induced translocation PKCδ isoform in these cells. Furthermore, DHA decreased PMA-induced proliferation of NIH/3T3 cells. In this study, we show for the first time that DHA inhibits MAP kinase (ERK1/ERK2) activation and proliferation of NIH/3T3 cells via its inhibitory action on PKCα and ε isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号