共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Chenlu Liu Hongtao Wang Xiuzhi Zhang Fengwang Ma Tianli Guo Cuiying Li 《International journal of molecular sciences》2021,22(23)
Drought seriously affects the yield and quality of apples. γ-aminobutyric acid (GABA) plays an important role in the responses of plants to various stresses. However, the role and possible mechanism of GABA in the drought response of apple seedlings remain unknown. To explore the effect of GABA on apple seedlings under drought stress, seedlings of Malus hupehensis were treated with seven concentrations of GABA, and the response of seedlings under 15-day drought stress was observed. The results showed that 0.5 mM GABA was the most effective at relieving drought stress. Treatment with GABA reduced the relative electrical conductivity and MDA content of leaves induced by drought stress and significantly increased the relative water content of leaves. Exogenous GABA significantly decreased the stomatal conductance and intercellular carbon dioxide concentration and transpiration rate, and it significantly increased the photosynthetic rate under drought. GABA also reduced the accumulation of superoxide anions and hydrogen peroxide in leaf tissues under drought and increased the activities of POD, SOD, and CAT and the content of GABA. Exogenous treatment with GABA acted through the accumulation of abscisic acid (ABA) in the leaves to significantly decrease stomatal conductance and increase the stomatal closure rate, and the levels of expression of ABA-related genes PYL4, ABI1, ABI2, HAB1, ABF3, and OST1 changed in response to drought. Taken together, exogenous GABA can enhance the drought tolerance of apple seedlings. 相似文献
4.
5.
Zhang L Gao M Hu J Zhang X Wang K Ashraf M 《International journal of molecular sciences》2012,13(3):3189-3202
The role of plant hormone abscisic acid (ABA) in plants under drought stress (DS) is crucial in modulating physiological responses that eventually lead to adaptation to an unfavorable environment; however, the role of this hormone in modulation of glycinebetaine (GB) metabolism in maize particularly at the seedling stage is still poorly understood. Some hydroponic experiments were conducted to investigate the modulation role of ABA on plant growth, water relations and GB metabolism in the leaves of two maize cultivars, Zhengdan 958 (ZD958; drought tolerant), and Jundan 20 (JD20; drought sensitive), subjected to integrated root-zone drought stress (IR-DS) simulated by the addition of polyethylene glycol (PEG, 12% w/v, MW 6000). The IR-DS substantially resulted in increased betaine aldehyde dehydrogenase (BADH) activity and choline content which act as the key enzyme and initial substrate, respectively, in GB biosynthesis. Drought stress also induced accumulation of GB, whereas it caused reduction in leaf relative water content (RWC) and dry matter (DM) in both cultivars. The contents of ABA and GB increased in drought-stressed maize seedlings, but ABA accumulated prior to GB accumulation under the drought treatment. These responses were more predominant in ZD958 than those in JD20. Addition of exogenous ABA and fluridone (Flu) (ABA synthesis inhibitor) applied separately increased and decreased BADH activity, respectively. Abscisic acid application enhanced GB accumulation, leaf RWC and shoot DM production in both cultivars. However, of both maize cultivars, the drought sensitive maize cultivar (JD20) performed relatively better than the other maize cultivar ZD958 under both ABA and Flu application in view of all parameters appraised. It is, therefore, concluded that increase in both BADH activity and choline content possibly resulted in enhancement of GB accumulation under DS. The endogenous ABA was probably involved in the regulation of GB metabolism by regulating BADH activity, and resulting in modulation of water relations and plant growth under drought, especially in the drought sensitive maize cultivar JD20. 相似文献
6.
Ming Qin Xiaoyan Li Shaohua Tang Yinglin Huang Ling Li Bo Hu 《International journal of molecular sciences》2021,22(7)
Arachis hypogaea abscisic acid transporter like-1 (AhATL1) modulates abscisic acid (ABA) sensitivity by specifically influencing the importing of ABA into cells, and is a key player in plant stress responses. However, there is limited information on ABA transporters in crops. In this study, we found that the level of AhATL1 expression and AhATL1 distribution increased more rapidly in the second drought (D2) compared with in the first drought (D1). Compared with the first recovery (R1), the AhATL1 expression level and ABA content remained at a higher level during the second recovery (R2). The heterologous overexpression of AhATL1 in Arabidopsis changed the expression pattern of certain memory genes and changed the post response gene type into the memory gene type. Regarding the proline and water content of Col (Arabidopsis thaliana L. Heynh., Col-0), atabcg22, and AhATL1-OX during drought training, the second drought (D2) was more severe than the first drought (D1), which was more conducive to maintaining the cell osmotic balance and resisting drought. In summary, drought stress memory resulted in a rapid increase in the AhATL1 expression and AhATL1 distribution level, and then raised the endogenous ABA content and changed the post response gene type into the memory gene type, which enhanced the drought resistance and recovery ability. 相似文献
7.
8.
9.
Liming Yang Tingbo Jiang Jake C. Fountain Brian T. Scully Robert D. Lee Robert C. Kemerait Sixue Chen Baozhu Guo 《International journal of molecular sciences》2014,15(10):18892-18918
Drought stress is a major factor that contributes to disease susceptibility and yield loss in agricultural crops. To identify drought responsive proteins and explore metabolic pathways involved in maize tolerance to drought stress, two maize lines (B73 and Lo964) with contrasting drought sensitivity were examined. The treatments of drought and well water were applied at 14 days after pollination (DAP), and protein profiles were investigated in developing kernels (35 DAP) using iTRAQ (isobaric tags for relative and absolute quantitation). Proteomic analysis showed that 70 and 36 proteins were significantly altered in their expression under drought treatments in B73 and Lo964, respectively. The numbers and levels of differentially expressed proteins were generally higher in the sensitive genotype, B73, implying an increased sensitivity to drought given the function of the observed differentially expressed proteins, such as redox homeostasis, cell rescue/defense, hormone regulation and protein biosynthesis and degradation. Lo964 possessed a more stable status with fewer differentially expressed proteins. However, B73 seems to rapidly initiate signaling pathways in response to drought through adjusting diverse defense pathways. These changes in protein expression allow for the production of a drought stress-responsive network in maize kernels. 相似文献
10.
The hormones auxin and cytokinin regulate numerous aspects of plant development and often act as an antagonistic hormone pair. One of the more striking examples of the auxin/cytokinin antagonism involves regulation of the shoot/root growth ratio in which cytokinin promotes shoot and inhibits root growth, whereas auxin does the opposite. Control of the shoot/root growth ratio is essential for the survival of terrestrial plants because it allows growth adaptations to water and mineral nutrient availability in the soil. Because a decrease in shoot growth combined with an increase in root growth leads to survival under drought stress and nutrient limiting conditions, it was not surprising to find that auxin promotes, while cytokinin reduces, drought stress tolerance and nutrient uptake. Recent data show that drought stress and nutrient availability also alter the cytokinin and auxin signaling and biosynthesis pathways and that this stress-induced regulation affects cytokinin and auxin in the opposite manner. These antagonistic effects of cytokinin and auxin suggested that each hormone directly and negatively regulates biosynthesis or signaling of the other. However, a growing body of evidence supports unidirectional regulation, with auxin emerging as the primary regulatory component. This master regulatory role of auxin may not come as a surprise when viewed from an evolutionary perspective. 相似文献
11.
12.
13.
14.
15.
Hui Liu Songbo Song Hui Zhang Yanhua Li Liangjie Niu Jinghua Zhang Wei Wang 《International journal of molecular sciences》2022,23(23)
Drought is a global threat that affects agricultural production. Plants have evolved several adaptive strategies to cope with drought. Stomata are essential structures for plants to control water status and photosynthesis rate. Stomatal closure is an efficient way for plants to reduce water loss and improve survivability under drought conditions. The opening and closure of stomata depend on the turgor pressure in guard cells. Three key signaling molecules, including abscisic acid (ABA), reactive oxygen species (ROS), and calcium ion (Ca2+), play pivotal roles in controlling stomatal closure. Plants sense the water-deficit signal mainly via leaves and roots. On the one hand, ABA is actively synthesized in root and leaf vascular tissues and transported to guard cells. On the other hand, the roots sense the water-deficit signal and synthesize CLAVATA3/EMBRYO-SURROUNDING REGION RELATED 25 (CLE25) peptide, which is transported to the guard cells to promote ABA synthesis. ABA is perceived by pyrabactin resistance (PYR)/PYR1-like (PYL)/regulatory components of ABA receptor (RCAR) receptors, which inactivate PP2C, resulting in activating the protein kinases SnRK2s. Many proteins regulating stomatal closure are activated by SnRK2s via protein phosphorylation. ABA-activated SnRK2s promote apoplastic ROS production outside of guard cells and transportation into the guard cells. The apoplastic H2O2 can be directly sensed by a receptor kinase, HYDROGEN PEROXIDE-INDUCED CA2+ INCREASES1 (HPCA1), which induces activation of Ca2+ channels in the cytomembrane of guard cells, and triggers an increase in Ca2+ in the cytoplasm of guard cells, resulting in stomatal closure. In this review, we focused on discussing the signaling transduction of ABA, ROS, and Ca2+ in controlling stomatal closure in response to drought. Many critical genes are identified to have a function in stomatal closure under drought conditions. The identified genes in the process can serve as candidate genes for genetic engineering to improve drought resistance in crops. The review summarizes the recent advances and provides new insights into the signaling regulation of stomatal closure in response to water-deficit stress and new clues on the improvement of drought resistance in crops. 相似文献
16.
17.
18.
19.
20.
Mengyi Chen Xiaoyang Zhu Xiaojuan Liu Caiyu Wu Canye Yu Guojian Hu Lin Chen Riyuan Chen Mondher Bouzayen Mohammed Zouine Yanwei Hao 《International journal of molecular sciences》2021,22(7)
Auxin response factors (ARFs) play important roles in various plant physiological processes; however, knowledge of the exact role of ARFs in plant responses to water deficit is limited. In this study, SlARF4, a member of the ARF family, was functionally characterized under water deficit. Real-time fluorescence quantitative polymerase chain reaction (PCR) and β-glucuronidase (GUS) staining showed that water deficit and abscisic acid (ABA) treatment reduced the expression of SlARF4. SlARF4 was expressed in the vascular bundles and guard cells of tomato stomata. Loss of function of SlARF4 (arf4) by using Clustered Regularly Interspaced Short Palindromic Repeats/Cas 9 (CRISPR/Cas 9) technology enhanced plant resistance to water stress and rehydration ability. The arf4 mutant plants exhibited curly leaves and a thick stem. Malondialdehyde content was significantly lower in arf4 mutants than in wildtype plants under water stress; furthermore, arf4 mutants showed higher content of antioxidant substances, superoxide dismutase, actual photochemical efficiency of photosystem II (PSII), and catalase activities. Stomatal and vascular bundle morphology was changed in arf4 mutants. We identified 628 differentially expressed genes specifically expressed under water deficit in arf4 mutants; six of these genes, including ABA signaling pathway-related genes, were differentially expressed between the wildtype and arf4 mutants under water deficit and unlimited water supply. Auxin responsive element (AuxRE) elements were found in these genes’ promoters indicating that SlARF4 participates in ABA signaling pathways by regulating the expression of SlABI5/ABF and SCL3, thereby influencing stomatal morphology and vascular bundle development and ultimately improving plant resistance to water deficit. 相似文献