首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cannabidiol (CBD) is an active natural compound that is extracted from Cannabis sativa. Previous studies show that CBD is a nonpsychotropic compound with significant anticancer effects. This study determines its cytotoxic effect on oral cancer cells and OEC-M1 cells and compares the outcomes with a chemotherapeutic drug, cisplatin. This study has investigated the effect of CBD on the viability, apoptosis, morphology, and migration of OEC-M1 cells. Electric cell–substrate impedance sensing (ECIS) is used to measure the change in cell impedance for cells that are treated with a series concentration of CBD for 24 h. AlamarBlue and annexin V/7-AAD staining assays show that CBD has a cytotoxic effect on cell viability and induces cell apoptosis. ECIS analysis shows that CBD decreases the overall resistance and morphological parameters at 4 kHz in a concentration-dependent manner. There is a significant reduction in the wound-healing recovery rate for cells that are treated with 30 μM CBD. This study demonstrates that ECIS can be used for in vitro screening of new chemotherapy and is more sensitive, functional, and comprehensive than traditional biochemical assays. CBD also increases cytotoxicity on cell survival and the migration of oral cancer cells, so it may be a therapeutic drug for oral cancer.  相似文献   

3.
Oral squamous cell carcinoma (OSCC) has a five-year survival rate of less than 50% due to its susceptibility to invasion and metastasis. Crosstalk between tumor cells and macrophages has been proven to play a critical role in tumor cell migration and invasion. However, the specific mechanisms by which tumor cells interact with macrophages have not been fully elucidated. This study sought to investigate the regulatory mechanism of tumor cell-derived alpha-enolase (ENO1) in the interaction between tumor cells and macrophages during OSCC progression. Small interfering RNA (siRNA) transfection and recombinant human ENO1 (rhENO1) stimulation were used to interfere with the interaction between tumor cells and macrophages. Our results showed that ENO1 was expressed higher in CAL27 cells than in HaCaT cells and regulated lactic acid release in CAL27 cells. Conditioned medium of macrophages (Macro-CM) significantly up-regulated the ENO1 mRNA expression and protein secretion in CAL27 cells. ENO1 promoted the migration and invasion of tumor cells by facilitating the epithelial–mesenchymal transition (EMT) through macrophages. ENO1 orchestrated the IL-6 secretion of macrophages via tumor cell-derived lactic acid and the paracrine ENO1/Toll-like receptor (TLR4) signaling pathway. In turn, IL-6 promoted the migration and invasion of tumor cells. Collectively, ENO1 promotes tumor cell migration and invasion by orchestrating IL-6 secretion of macrophages via a dual mechanism, thus forming a positive feedback loop to promote OSCC progression. ENO1 might be a promising therapeutic target which is expected to control OSCC progression.  相似文献   

4.
Cancer-associated fibroblasts (CAFs) and partial epithelial–mesenchymal transition (p-EMT) tumor cells are closed together and contribute to the tumor progression of oral squamous cell carcinoma (OSCC). In the present study, we deeply analyzed and integrated OSCC single-cell RNA sequencing datasets to define OSCC CAFs and p-EMT subpopulations. We highlighted the cell–cell interaction network of CAFs and p-EMT tumor cells and suggested biomarkers for the diagnosis and prognosis of OSCC during the metastasis condition. The analysis discovered four subtypes of CAFs: one p-EMT tumor cell population, and cycling tumor cells as well as TNFSF12-TNFRSF25/TNFRSF12A interactions between CAFs and p-EMT tumor cells during tumor metastasis. This suggests the prediction of therapeutically targetable checkpoint receptor–ligand interactions between CAFs and p-EMT tumor cells in OSCC regarding the metastasis status.  相似文献   

5.
The expression of programmed death ligand-1 (PD-L1) is controlled by complex mechanisms. The elucidation of the molecular mechanisms of PD-L1 expression is important for the exploration of new insights into PD-1 blockade therapy. Detailed mechanisms of the in situ expression of PD-L1 in tissues of oral squamous cell carcinomas (OSCCs) have not yet been clarified. We examined the mechanisms of PD-L1 expression focusing on the phosphorylation of downstream molecules of epidermal growth factor (EGF) and interferon gamma (IFN-γ) signaling in vitro and in vivo by immunoblotting and multi-fluorescence immunohistochemistry (MF-IHC), respectively. The in vitro experiments demonstrated that PD-L1 expression in OSCC cell lines is upregulated by EGF via the EGF receptor (EGFR)/PI3K/AKT pathway, the EGFR/STAT1 pathway, and the EGFR/MEK/ERK pathway, and by IFN-γ via the JAK2/STAT1 pathway. MF-IHC demonstrated that STAT1 and EGFR phosphorylation was frequently shown in PD-L1-positive cases and STAT1 phosphorylation was correlated with lymphocyte infiltration and EGFR phosphorylation. Moreover, the phosphorylation pattern of the related molecules in PD-L1-positive cells differed among the cases investigated. These findings indicate that PD-L1 expression mechanisms differ depending on the tissue environment and suggest that the examination of the tissue environment and molecular alterations of cancer cells affecting PD-L1 expression make it necessary for each patient to choose the appropriate combination drugs for PD-1 blockade cancer treatment.  相似文献   

6.
Anoctamin1 (ANO1), a calcium-activated chloride channel, is frequently overexpressed in several cancers, including oral squamous cell carcinoma (OSCC). OSCC is a highly aggressive cancer and the most common oral malignancy. ANO1 has been proposed as a potential candidate for targeted anticancer therapy. In this study, we performed a cell-based screening to identify novel regulators leading to the downregulation of ANO1, and discovered cinobufagin, which downregulated ANO1 expression in oral squamous cell carcinoma CAL-27 cells. ANO1 protein levels were significantly reduced by cinobufagin in a dose-dependent manner with an IC50 value of ~26 nM. Unlike previous ANO1 inhibitors, short-term (≤10 min) exposure to cinobufagin did not alter ANO1 chloride channel activity and ANO1-dependent intestinal smooth muscle contraction, whereas long-term (24 h) exposure to cinobufagin significantly reduced phosphorylation of STAT3 and mRNA expression of ANO1 in CAL-27 cells. Notably, cinobufagin inhibited cell proliferation of CAL-27 cells expressing high levels of ANO1 more potently than that of ANO1 knockout CAL-27 cells. In addition, cinobufagin significantly reduced cell migration and induced caspase-3 activation and PARP cleavage in CAL-27 cells. These results suggest that downregulation of ANO1 by cinobufagin is a potential mechanism for the anticancer effect of cinobufagin in OSCC.  相似文献   

7.
Oral squamous cell carcinoma (OSCC) accounts for over 90% of oral cancers and causes considerable morbidity and mortality. Epigenetic deregulation is a common mechanism underlying carcinogenesis. DNA methylation deregulation is the epigenetic change observed during the transformation of normal cells to precancerous and eventually cancer cells. This study investigated the DNA methylation patterns of PTK6 during the development of OSCC. Bisulfite genomic DNA sequencing was performed to determine the PTK6 methylation level. OSCC animal models were established to examine changes in PTK6 expression in the different stages of OSCC development. The DNA methylation of PTK6 was decreased during the development of OSCC. The mRNA and protein expression of PTK6 was increased in OSCC cell lines compared with human normal oral keratinocytes. In mice, the methylation level of PTK6 decreased after treatment with 4-nitroquinoline 1-oxide and arecoline, and the mRNA and protein expression of PTK6 was increased. PTK6 hypomethylation can be a diagnostic marker of OSCC. Upregulation of PTK6 promoted the proliferation, migration, and invasion of OSCC cells. PTK6 promoted carcinogenesis and metastasis by increasing STAT3 phosphorylation and ZEB1 expression. The epigenetic deregulation of PTK6 can serve as a biomarker for the early detection of OSCC and as a treatment target.  相似文献   

8.
Oral squamous cell carcinoma (OSCC) is one of the most common types of malignant tumor. Sequestosome 1 (SQSTM1) serves as an adaptor of autophagy for degrading protein aggregates. The regulation of autophagy by EGFR and its clinical impacts are indicated in various types of cancer. However, the association of EGFR and SQSTM1 in OSCC is still unknown. Our results show that the expression levels of SQSTM1 and EGFR proteins are higher in tumor tissues than in the corresponding tumor-adjacent (CTAN) tissues of OSCC patients. The expression levels of SQSTM1 were positively associated with the EGFR expression level. High co-expression of SQSTM1 and EGFR is associated with poor prognosis in OSCC patients. Moreover, SQSTM1 expression is decreased in EGFR-knockdown cells. Cell growth and invasion/migration are also decreased in cells with single/combined knockdowns of EGFR and SQSTM1 or in SQSTM1-knockdown cells without EGFR kinase inhibitor Lapatinib treatment compared to that in scrambled cells. However, cell growth and invasion/metastasis were not significantly different between the scrambled cells and SQSTM1-knockdown cells in the presence of Lapatinib. This study is the first to indicate the biological roles and clinical significance of SQSTM1 regulation by EGFR in OSCC.  相似文献   

9.
Oral squamous cell carcinoma (OSCC) is one of the top 15 most prevalent cancers worldwide. However, the current treatment models for OSCC (e.g., surgery, chemotherapy, radiotherapy, and combination therapy) present several limitations: damage to adjacent healthy tissue, possible recurrence, low efficiency, and severe side effects. In this context, nanomaterial-based photothermal therapy (PTT) has attracted extensive research attention. This paper reviews the latest progress in the application of biological nanomaterials for PTT in OSCC. We divide photothermal nanomaterials into four categories (noble metal nanomaterials, carbon-based nanomaterials, metal compounds, and organic nanomaterials) and introduce each category in detail. We also mention in detail the drug delivery systems for PTT of OSCC and briefly summarize the applications of hydrogels, liposomes, and micelles. Finally, we note the challenges faced by the clinical application of PTT nanomaterials and the possibility of further improvement, providing direction for the future research of PTT in OSCC treatment.  相似文献   

10.
N1-methyladenosine (m1A) modification widely participates in the occurrence and progression of numerous diseases. Nevertheless, the potential roles of m1A in the tumor immune microenvironment (TIME) are still not fully understood. Based on 10 m1A methylation regulators, we comprehensively explored the m1A modification patterns in 502 patients with oral squamous cell carcinoma (OSCC). The m1A modification patterns were correlated with TIME characteristics and the m1A score was established to evaluate the effect of the m1A modification patterns on individual OSCC patients. The TIME characteristics and survival outcomes under the three m1A modification patterns were significantly distinct. OSCC patients in the high m1A score group were characterized by poorer prognosis, lower immune infiltration, lower ssGSEA score, lower expression levels of immune checkpoint molecules, and higher tumor mutation loads. The present study revealed that m1A modification might be associated with the TIME in OSCC, and has potential predictive ability for the prognosis of OSCC.  相似文献   

11.
Cluster of differentiation (CD)147, also termed extracellular matrix metalloprotease inducer or basigin, is a glycoprotein ubiquitously expressed throughout the human body, the oral cavity included. CD147 actively participates in physiological tissue development or growth and has important roles in reactive processes such as inflammation, immunity, and tissue repair. It is worth noting that deregulated expression and/or activity of CD147 is observed in chronic inflammatory or degenerative diseases, as well as in neoplasms. Among the latter, oral squamous cell carcinoma (OSCC) is characterized by an upregulation of CD147 in both the neoplastic and normal cells constituting the tumor mass. Most interestingly, the expression and/or activity of CD147 gradually increase as healthy oral mucosa becomes inflamed; hyperplastic/dysplastic lesions are then set on, and, eventually, OSCC develops. Based on these findings, here we summarize published studies which evaluate whether CD147 could be employed as a marker to monitor OSCC development and progression. Moreover, we describe CD147-promoted cellular and molecular events which are relevant to oral carcinogenesis, with the aim to provide useful information for assessing whether CD147 may be the target of novel therapeutic approaches directed against OSCC.  相似文献   

12.
Sinonasal squamous cell carcinoma (SNSCC) is an aggressive tumor predominantly arising in the maxillary sinus and nasal cavities. Advances in imaging, surgical and radiotherapeutic techniques have reduced complications and morbidity; however, the prognosis generally remains poor, with an overall 5-year survival rate of 30–50%. As immunotherapy may be a new therapeutic option, we analyzed CD8+ tumor-infiltrating lymphocytes (TILs) and the tumor microenvironment immune type (TMIT, combining CD8+ TILs and PD-L1) in a series of 57 SNSCCs. Using immunohistochemistry, tissue samples of 57 SNSCCs were analyzed for expression of CD8 on TILs and of PD-L1 on tumor cells. The results were correlated to the clinical and survival data. In total, 88% (50/57) of the tumors had intratumoral CD8+ TILs; 19% (11/57)—CD8high (>10%); and 39/57 (68%)—CD8low (1–10%). PD-L1 positivity (>5%) was observed in 46% (26/57) of the SNSCCs and significantly co-occurred with CD8+ TILs (p = 0.000). Using univariate analysis, high intratumoral CD8+ TILs and TMIT I (CD8high/PD-L1pos) correlated with a worse survival rate. These results indicate that SNSCCs are immunogenic tumors, similar to head and neck squamous cell carcinomas. Nineteen percent of the cases were both CD8high and PD-L1pos and this subgroup may benefit from therapy with immune checkpoint inhibitors.  相似文献   

13.
Despite recent advances in treatment, the prognosis of oral cancer remains poor, and prevention of recurrence and metastasis is critical. Olaparib is a PARP1 inhibitor that blocks polyADP-ribosylation, which is involved in the epithelial–mesenchymal transition (EMT) characteristic of tumor recurrence. We explored the potential of olaparib in inhibiting cancer invasion in oral carcinoma using three oral cancer cell lines, HSC-2, Ca9-22, and SAS. Olaparib treatment markedly reduced their proliferation, migration, invasion, and adhesion. Furthermore, qRT-PCR revealed that olaparib inhibited the mRNA expression of markers associated with tumorigenesis and EMT, notably Ki67, Vimentin, β-catenin, MMP2, MMP9, p53, and integrin α2 and β1, while E-Cadherin was upregulated. In vivo analysis of tumor xenografts generated by injection of HSC-2 cells into the masseter muscles of mice demonstrated significant inhibition of tumorigenesis and bone invasion by olaparib compared with the control. This was associated with reduced expression of proteins involved in osteoclastogenesis, RANK and RANKL. Moreover, SNAIL and PARP1 were downregulated, while E-cadherin was increased, indicating the effect of olaparib on proteins associated with EMT in this model. Taken together, these findings confirm the effects of olaparib on EMT and bone invasion in oral carcinoma and suggest a new therapeutic strategy for this disease.  相似文献   

14.
Inhibition of the protein neddylation process by the small-molecule inhibitor MLN4924 has been recently indicated as a promising direction for cancer treatment. However, the knowledge of all biological consequences of MLN4924 for cancer cells is still incomplete. Here, we report that MLN4924 inhibits tumor necrosis factor-alpha (TNF-α)-induced matrix metalloproteinase 9 (MMP9)-driven cell migration. Using real-time polymerase chain reaction (PCR) and gelatin zymography, we found that MLN4924 inhibited expression and activity of MMP9 at the messenger RNA (mRNA) and protein levels in both resting cells and cells stimulated with TNF-α, and this inhibition was closely related to impaired cell migration. We also revealed that MLN4924, similar to TNF-α, induced phosphorylation of inhibitor of nuclear factor kappa B-alpha (IκB-α). However, contrary to TNF-α, MLN4924 did not induce IκB-α degradation in treated cells. In coimmunoprecipitation experiments, nuclear IκB-α which formed complexes with nuclear factor kappa B p65 subunit (NFκB/p65) was found to be highly phosphorylated at Ser32 in the cells treated with MLN4924, but not in the cells treated with TNF-α alone. Moreover, in the presence of MLN4924, nuclear NFκB/p65 complexes were found to be enriched in c-Jun and cyclin dependent kinase inhibitor 1 A (CDKN1A/p21) proteins. In these cells, NFκB/p65 was unable to bind to the MMP9 gene promoter, which was confirmed by the chromatin immunoprecipitation (ChIP) assay. Taken together, our findings identified MLN4924 as a suppressor of TNF-α-induced MMP9-driven cell migration in esophageal squamous cell carcinoma (ESCC), likely acting by affecting the nuclear ubiquitin–proteasome system that governs NFκB/p65 complex formation and its DNA binding activity in regard to the MMP9 promoter, suggesting that inhibition of neddylation might be a new therapeutic strategy to prevent invasion/metastasis in ESCC patients.  相似文献   

15.
Corosolic acid (CA; 2α-hydroxyursolic acid) is a natural pentacyclic triterpenoid with antioxidant, antitumour and antimetastatic activities against various tumour cells during tumourigenesis. However, CA’s antitumour effect and functional roles on human oral squamous cell carcinoma (OSCC) cells are utterly unknown. In this study, our results demonstrated that CA significantly exerted an inhibitory effect on matrix metalloproteinase (MMP)1 expression, cell migration and invasion without influencing cell growth or the cell cycle of human OSCC cells. The critical role of MMP1 was confirmed using the GEPIA database and showed that patients have a high expression of MMP1 and have a shorter overall survival rate, confirmed on the Kaplan–Meier curve assay. In the synergistic inhibitory analysis, CA and siMMP1 co-treatment showed a synergically inhibitory influence on MMP1 expression and invasion of human OSCC cells. The ERK1/2 pathway plays an essential role in mediating tumour progression. We found that CA significantly inhibits the phosphorylation of ERK1/2 dose-dependently. The ERK1/2 pathway played an essential role in the CA-mediated downregulation of MMP1 expression and in invasive motility in human OSCC cells. These findings first demonstrated the inhibitory effects of CA on OSCC cells’ progression through inhibition of the ERK1/2–MMP1 axis. Therefore, CA might represent a novel strategy for treating OSCC.  相似文献   

16.
A predictive biomarker of immune checkpoint inhibitor (ICI)-based treatments in hepatocellular carcinoma (HCC) has not been clearly demonstrated. In this study, we focused on the infiltration and programmed death ligand 1 (PD-L1) expression of tumor-associated macrophages (TAMs) in the tumor microenvironment of HCC. Immunohistochemistry demonstrated that PD-L1 was preferentially expressed on CD68+ macrophages in the tumor microenvironment of HCC, suggestive of its expression in TAMs rather than in T cells or tumor cells (P < 0.05). A co-culture experiment using activated T cells and M2 macrophages confirmed a significant increase in T cell functionality after the pretreatment of M2 macrophages with anti-PD-L1. Syngeneic mouse model experiments demonstrated that TAMs expressed PD-L1 and tumors treated with anti-PD-L1 showed smaller diameters than those treated with IgG. In these mice, anti-PD-L1 treatment increased activation markers in intratumoral CD8+ T cells and reduced the size of the TAM population. Regarding nivolumab-treated patients, three of eight patients responded to the anti-PD-1 treatment. The percentage of Ki-67-positive CD4+ and CD8+ T cells was higher in responders than non-responders after nivolumab. Overall, PD-L1 expression on TAMs may be targeted by immune-based HCC treatment, and ICI treatment results in the reinvigoration of exhausted CD8+ T cells in HCC.  相似文献   

17.
18.
The early diagnosis of oral squamous cell carcinoma (OSCC) is still an investigative challenge. Saliva has been proposed as an ideal diagnostic medium for biomarker detection by mean of liquid biopsy technique. The aim of this pilot study was to apply proteomic and bioinformatic strategies to determine the potential use of saliva small extracellular vesicles (S/SEVs) as a potential tumor biomarker source. Among the twenty-three enrolled patients, 5 were free from diseases (OSCC_FREE), 6 were with OSCC without lymph node metastasis (OSCC_NLNM), and 12 were with OSCC and lymph node metastasis (OSCC_LNM). The S/SEVs from patients of each group were pooled and properly characterized before performing their quantitative proteome comparison based on the SWATH_MS (Sequential Window Acquisition of all Theoretical Mass Spectra) method. The analysis resulted in quantitative information for 365 proteins differentially characterizing the S/SEVs of analyzed clinical conditions. Bioinformatic analysis of the proteomic data highlighted that each S/SEV group was associated with a specific cluster of enriched functional network terms. Our results highlighted that protein cargo of salivary small extracellular vesicles defines a functional signature, thus having potential value as novel predict biomarkers for OSCC.  相似文献   

19.
Oral squamous cell carcinoma (OSCC) typically migrates and metastasizes. Interleukin-6 (IL-6) is a multifunctional cytokine associated with disease status and cancer outcomes. The effect of IL-6 on human OSCC cells, however, is unknown. Here, we showed that IL-6 increased cell migration and Intercellular adhesion molecule-1 (ICAM-1) expression in OSCC cells. Pretreatment of OSCC cells with IL-6R monoclonal antibody (mAb) significantly abolished IL-6-induced cell migration and ICAM-1 expression. By contrast, IL-6-mediated cell motility and ICAM-1 upregulation were attenuated by the Syk and c-Jun N-terminal kinase (JNK) inhibitors. Stimulation of OSCC cells with IL-6 promoted Syk and JNK phosphorylation. Furthermore, IL-6 enhanced AP-1 activity, and the IL-6R mAb, Syk inhibitor, or JNK inhibitor all reduced IL-6-mediated c-Jun phosphorylation, c-Jun binding to the ICAM-1 promoter, and c-Jun translocation into the nucleus. Our results indicate that IL-6 enhances the migration of OSCC cells by increasing ICAM-1 expression through the IL-6R receptor and the Syk, JNK, and AP-1 signal transduction pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号