首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的 研究W含量对激光熔覆CoCrFeNi高熵合金涂层组织及性能的影响。方法 采用RFL-C1000光纤激光器在45#钢表面制备CoCrFeNiWx(x=0、0.2、0.4、0.6、0.8)高熵合金涂层,利用光学显微镜、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、显微硬度计、摩擦磨损试验机等,对熔覆层的宏观形貌、微观组织、显微硬度和摩擦磨损性能进行分析和测试。结果 熔覆层与基材之间的润湿性较好。随着W元素含量的增加,涂层由单一的FCC相转变为FCC相+μ相(Fe7W6、Co7W6),微观组织由胞状晶转变为树枝晶,晶粒尺寸减小,且在x=0.8时出现了明显的共晶组织和大量μ相沉淀。熔覆层的显微硬度随着W含量的增加而增大,x=0.8时,熔覆层具有最高的显微硬度,达到432.02HV0.3,约为基材硬度的2.1倍,为CoCrFeNi熔覆层硬度的2.2倍。x=0.6时,涂层磨损量最小,仅为CoCrFeNi涂层磨损量的30.85%,平均摩擦因数最低,约为0.31...  相似文献   

2.
采用氩弧熔覆技术在Q235钢基体表面制备了CoCrFeNiCuTix(x表示摩尔比值,x=0、0.3、0.5、0.8和1)高熵合金涂层,研究了Ti含量对CoCrFeNiCuTix高熵合金微观结构和力学性能的影响。结果表明,不同Ti含量的CoCrFeNiCuTix高熵合金均为FCC单相固溶体。CoCrFeNiCu合金的微观组织为柱状晶结构。随着Ti的加入,微观组织中开始出现析出相,且Ti含量越高,析出相越多。同时Ti的加入明显提高了合金的显微硬度,当Ti的摩尔比为1时,涂层的截面显微硬度值达到最高值439.54 HV0.1。Ti对CoCrFeNiCuTix高熵合金的耐磨性具有显著影响,CoCrFeNiCuTi合金表现出最好的耐磨性。随着Ti含量的升高,合金的磨损机理由黏着磨损转化成黏着磨损与氧化磨损并存。  相似文献   

3.
采用真空电弧熔炼炉制备FeCrMnAlCux(x=0, 0.5, 1.0, 1.5, 2.0)高熵合金,采用XRD、SEM、TEM、显微硬度仪、电子万能试验机和摩擦磨损实验机检测分析了Cu含量的变化对合金相结构、显微组织、压缩性能、硬度、耐磨性的影响。结果表明:FeCrMnAlCux高熵合金为典型的树枝晶组织,由BCC结构的枝晶组织、FCC结构的枝晶间组织及枝晶内析出的具有BCC结构的纳米级析出物构成。随着Cu含量的增加,合金微观组织中的枝晶组织含量减小,枝晶间组织含量增大;BCC结构的枝晶组织中弥散析出的第二相颗粒对合金的强度和硬度有着重要的影响,抗压强度和屈服强度在x=1.0时达到最大(分别为1230.2 MPa和960.5 MPa),合金的压缩变形率在x=2.0时达到最大值20.68%;随着Cu含量的增加,合金的硬度先增加后减少,合金硬度在x=0.5时达到最大值421.4HV,此时合金的摩擦性能最好,其磨损率为2.25×10-5 mm3/(N·mm)。  相似文献   

4.
采用铜模吸铸法制备AlCuFeNiTiCrx(x=0.5, 1.0, 1.5, 2.0)高熵合金,并在1000℃下进行3 h退火处理。通过X射线衍射仪(XRD)、光学显微镜、维氏硬度计,分别测试了铸态和退火态AlCuFeNiTiCrx(x=0.5, 1.0, 1.5, 2.0)高熵合金的微观结构演变及维氏硬度值。发现铸态和退火态试样仅由简单的体心立方(BCC)和面心立方(FCC)固溶体相组成,而退火态试样中的FCC相与铸态试样中的FCC相相比有所增加。根据金相显微照片,两种状态下的高熵合金仅存在枝晶和晶间相,且退火后的显微组织变得更加均匀。两种状态下高熵合金的硬度均随Cr含量的增加而增加,且退火态试样的硬度值远大于铸态试样。  相似文献   

5.
采用水冷铜坩埚真空感应悬浮熔炼制备了多组元高熵合金Al0.5CoCrCuFeNi,研究了不同热处理工艺对合金的显微组织和硬度的影响规律。结果表明,Al0.5CoCrCuFeNi高熵合金相结构简单,在铸态下由两种不同成分的FCC相组成,枝晶处为贫Cu的FCC1相,枝晶间为富Cu的FCC2相,显微组织为树枝晶形貌,存在一定的枝晶偏析。合金制备态的硬度为255 HV0.5。合金具有良好的热稳定性,随着热处理温度的升高,合金的相结构和硬度均无太大的变化。冷却方式对合金的显微组织和相结构影响不大,但炉冷后合金的硬度比空冷和水冷时高。  相似文献   

6.
采用真空电弧熔炼方法制备Co30Cr30(FeNi)40-xWx(x=0~8%(摩尔分数),分别简化为HWO~HW8)高熵合金。研究铸态和退火态合金的显微组织和拉伸性能。结果表明,HW2和HW4具有单一的FCC相。随着W含量和退火温度的增加,细小粒状μ相的面积分数增加且分散在FCC基体中。软FCC基体和硬μ相构成应变不相容的异质结构。随着W含量从0增加到8%(摩尔分数),屈服强度和抗拉强度分别从278和629 MPa提高到530和839 MPa,应变维持在33%。退火后的HW8表现出优异的屈服强度(810 MPa)和抗拉强度(1087 MPa)。屈服强度的提高归因于固溶、沉淀和背应力强化。异质结构中产生的背应力强化作用诱导高硬化行为,在提高抗拉强度和塑性方面发挥着主导作用。  相似文献   

7.
目的研究Si含量对激光熔覆FeCoCr_(0.5)NiBSi_x高熵合金涂层组织结构、硬度和耐磨性的影响。方法采用激光熔覆技术,在45钢基体表面制备了不同Si含量的FeCoCr_(0.5)NiBSi_x(x取0,0.1,0.2,0.3,0.4)系列高熵合金涂层,分析涂层的宏观形貌、微观组织及相结构,测试涂层的硬度,通过摩擦磨损实验测试涂层的耐磨性。结果熔覆态高熵合金涂层均由FCC相和M2B相组成,显微组织包括先共晶组织和共晶组织。随着Si含量的增加,FCC相增多,M_2B相减少,共晶组织由蜂窝状到颗粒状,然后消失。高熵合金涂层的平均硬度随着Si含量的增加而先降低后增加,FeCoCr_(0.5)NiBSi0.3的硬度值最小(613HV),FeCoCr_(0.5)NiBSi_(0.4)的硬度值最高(820HV)。高熵合金涂层的磨损体积随着Si含量的增加而先增大后减小,FeCoCr_(0.5)NiBSi_(0.3)的磨损体积最大(0.00406mm3),FeCoCr_(0.5)NiBSi0.4的磨损体积最小(0.00233mm3)。结论随着Si含量增加,涂层的M2B相减少,共晶组织逐步消失,耐磨性则先降低后提高。耐磨性能最好的是FeCoCr_(0.5)NiBSi_(0.4)高熵合金涂层。  相似文献   

8.
目的 通过对激光熔覆CoCrFeNiW0.6高熵合金涂层进行退火处理,使涂层性能得到进一步提高。方法 采用RFL–C1000光纤激光器在45钢表面制备CoCrFeNiW0.6高熵合金涂层,通过SXL–1200管式电阻炉在不同温度下(600、800、1 000 ℃)对高熵合金涂层进行退火处理,保温时间为2 h,冷却方式为随炉冷却。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)、显微硬度计、摩擦磨损试验机等对熔覆层的微观组织、显微硬度和摩擦磨损性能进行分析和测试。结果 CoCrFeNiW0.6高熵合金涂层由FCC相和μ相(Fe7W6)组成,经过不同温度退火处理后,涂层未析出新的相,μ相衍射峰强度呈先减小后增大的趋势;涂层组织经高温退火(800 ℃、1 000 ℃,2 h)后发生了明显的改变,经800 ℃/2 h退火处理后,枝晶间析出了大量μ相沉淀,经1 000 ℃/2 h退火处理后晶界开始出现断裂分解,晶粒内部和晶界部位析出了大量的富W颗粒相(μ 相)。经1 000 ℃/2 h退火处理后,熔覆层具有较高的平均显微硬度,为475.68HV0.3,相较于未经退火处理的熔覆层,其硬度提高了约45%;经600 ℃/2 h退火处理后,涂层的平均摩擦因数最低,约为0.226,磨损量最小,与未经退火处理的涂层相比,其磨损量降低了约28%。退火温度的升高并未使磨损机制发生明显改变,主要为磨粒磨损。结论 高温退火处理可以促进μ相的生成;经退火后,CoCrFeNiW0.6高熵合金涂层的硬度得到显著提高,改善了涂层的摩擦磨损性能,强化机制为固溶强化和第二相强化。  相似文献   

9.
采用激光熔覆方法在Q235钢上制备FeCoCrNiB0.5高熵合金涂层,利用XRD、SEM以及显微维氏硬度计等,研究时效温度对涂层的显微组织、相结构及硬度的影响。结果表明,涂层由FCC结构固溶体和M2B两相构成,并且相结构具有很好的高温稳定性。涂层经过800 ℃和900 ℃时效后,枝晶内有大量的颗粒状M2B相脱溶物析出;而1000 ℃时效后,枝晶间的M2B相显著粗化,涂层中树枝晶组织消失。FeCoCrNiB0.5高熵合金涂层的硬度为447 HV0.2,且涂层硬度随时效温度升高而逐渐降低。  相似文献   

10.
采用激光熔覆技术在TC4(Ti-6Al-4V)钛合金表面制备出了AlCoCrFeNiTi_(0.5)高熵合金熔覆层。运用XRD、OM、SEM、EDS等手段分析了熔覆层的相组成、微观形貌和成分;利用显微硬度仪和多功能摩擦磨损试验机分别检测了熔覆层的硬度和耐磨性能。结果表明:当激光功率P=1500 W,光斑直径D=3 mm,扫描速度V=20 mm/s时,制备出了与基体结合良好,无明显缺陷的高熵合金层。熔覆层主要由面心立方(FCC)结构相、体心立方(BCC)结构相和少量的Laves相组成。熔覆层的平均硬度为699.7 HV0.2,约为基体硬度(298.3 HV0.2)的2.35倍。摩擦磨损试验结果表明熔覆层的耐磨性较基体提高约42倍。  相似文献   

11.
在CoCrNi三元、CoCrFeNi四元和Al0.3CoCrFeNi五元合金中分别添加0.1~0.5(摩尔比)Ti,通过真空电弧炉制备出高硬度和高压缩强度的中/高熵CoCrNiTix、CoCrFeNiTix和Al0.3CoCrFeNiTix合金棒材。Ti添加量为0.1的合金棒材(以下简称Ti0.1合金,其余合金作相同处理)均保持单相FCC结构;Ti0.3合金均出现少量的新相(η或R);CoCrNiTi0.5合金由FCC+BCC+η+σ相组成,Al0.3CoCrFeNiTi0.5合金由FCC+BCC+R+B2相组成,且二者微观组织均呈“花朵”状;而CoCrFeNiTi0.5合金则由FCC+Laves+R+σ相组成,为树枝晶状结构。随着Ti含量的增加,三种体系合金的硬度均逐渐提高,且提高幅度按CoCrNiTix  相似文献   

12.
研究Al含量和热处理对FeCoNiCrCu0.5Alx多主元高熵合金的相结构、硬度和电化学性能的影响规律。随着Al含量的增加,铸态合金的相结构由FCC相向BCC相转变。当x从0.5增加到1.5时,FeCoNiCrCu0.5Alx高熵合金的稳定结构由FCC结构向FCC+BCC双相结构转变。BCC相的硬度高于FCC相的,在氯离子及酸性介质中BCC相的耐腐蚀性均优于FCC相的。FeCoNiCrCu0.5Al1.0铸态合金具有高硬度和良好的抗腐蚀性能。  相似文献   

13.
采用水冷铜坩埚真空感应悬浮熔炼制备了多组元高熵合金Al0.5Co Cr Cu Fe Ni,研究了不同热处理工艺对合金的显微组织和硬度的影响规律。结果表明,Al0.5Co Cr Cu Fe Ni高熵合金相结构简单,在铸态下由两种不同成分的FCC相组成,枝晶处为贫Cu的FCC1相,枝晶间为富Cu的FCC2相,显微组织为树枝晶形貌,存在一定的枝晶偏析。合金制备态的硬度为255 HV0.5。合金具有良好的热稳定性,随着热处理温度的升高,合金的相结构和硬度均无太大的变化。冷却方式对合金的显微组织和相结构影响不大,但炉冷后合金的硬度比空冷和水冷时高。  相似文献   

14.
目的 利用氩弧熔覆技术在45钢表面制备出AlCrFeCoCuNi高熵合金涂层,改善其耐磨性能。方法 采用机械球磨方式将Al、Cr、Fe、Co、Cu、Ni粉均匀混合,预涂敷在45钢表面,利用氩弧熔覆技术制备出不同Al物质的量之比的高熵合金涂层。采用X射线衍射仪、扫描电子显微镜及能谱分析仪分析涂层的物相及显微组织,利用显微硬度仪测试涂层表面及截面的显微硬度。采用摩擦磨损试验机测试涂层的摩擦系数及磨损率,分析涂层的耐磨性能。结果 AlxCrFeCoCuNi高熵合金涂层物相主要包括面心立方(FCC)相和体心立方(BCC)相,当Al物质的量之比小于0.5时,涂层由FCC相构成;当Al物质的量之比为1.0~2.0时,涂层由BCC+FCC相构成;当Al物质的量之比达到2.5时,涂层仅存在BCC相。AlxCrFeCoCuNi高熵合金涂层组织由等轴晶、柱状晶及白色的晶界构成,且较为致密。Al物质的量之比的增加使得涂层的显微硬度提升,当Al物质的量之比为2.5时,涂层最高硬度为710 HV0.5。在相同磨损条件下,AlxCrFeCoCuNi...  相似文献   

15.
使用激光熔覆技术在Q235钢基体上制备AlxNbMn2FeMoTi0.5高熵合金涂层,期望借此提高干切削技术适用刀具表层的硬度和耐磨性。经过初步筛选之后,主要研究了AlxNbMn2FeMoTi0.5(x=1、1.5、2)高熵合金涂层体系,并采用XRD和3D激光扫描成像等手段分析了不同Al含量的AlxNbMn2FeMoTi0.5合金涂层的晶相结构、显微组织和具体元素分布。结果显示,对于AlxNbMn2FeMoTi0.5高熵合金涂层,随着Al含量的增加,涂层的相结构由单一的BCC相逐渐转变为双相BCC结构,晶粒逐渐细化。当x=2时,AlxNbMn2FeMoTi0.5高熵合金涂层硬度最高,平均为1089.6 HV0.3,大约为基材的5倍,且其具有最优的耐磨损性能。x=1.5时,AlxNbMn2FeMoTi0.5高熵合金涂层的自腐蚀电位最高,自腐蚀电流密度最小,耐腐蚀性最好。  相似文献   

16.
利用激光熔覆技术在Q235基体表面制备CoCrFeNiTi0.8Nby(y=0.25,0.5,0.75,1.0)涂层.采用光学显微镜、X射线衍射仪、扫描电子显微镜、能谱分析仪等方法分析涂层的相结构和微观组织等;用显微维氏硬度计、摩擦磨损试验机测试涂层的硬度与耐磨性能.结果表明,组织中呈现典型的树枝晶结构,加入Nb元素,涂层微观组织的尺寸减小,增加Nb元素含量时,高熵合金涂层的晶体结构由体心立方相(body-centered cubi,BCC)、少量的面心立方相(face-centered cubic,FCC)和Fe2(Ti,Nb)型的Laves相组成;在细晶强化、固溶强化和第二相强化的共同作用下提高了涂层的显微硬度;中间相的存在一定程度上可以阻碍犁削切削过程的进行,进而提高了涂层的耐磨性能;CoCrFeNiTi0.8Nb0.75涂层的硬度和耐磨性最好,硬度为710 HV,约为基体的4倍,涂层的磨损量最小,磨痕较为平整.  相似文献   

17.
《铸造》2020,(1)
采用真空电弧熔炼法制备了一系列Al_xCoFeNiMo合金(x=0、0.3、0.5、0.8、1.0)。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)、万能试验机以及显微维氏硬度计,研究了铝元素含量变化对试样的晶体结构、显微形貌、成分、压缩性能和硬度的影响。结果表明,随着铝含量的增加,晶体结构从最开始的由富(Co、Fe、Ni)的FCC和μ双相组成,逐渐转变成FCC、μ和富(Al、Ni)的BCC的三相结构,最后转变成BCC和μ双相结构。CoFeNiMo合金具有较好的综合力学性能,其抗压强度为1997.8MPa,塑性应变为17%。随着铝含量从x=0逐渐增加到x=1.0,抗压强度先增大后减小,维氏硬度值从HV458单调增加至HV750。分析认为,Al元素的固溶强化作用和FCC相转变为BCC相是合金强化的重要原因。  相似文献   

18.
采用真空电弧熔炼的方法制备了CrxMoNbTiZr系高熵合金(x=0, 0.5, 1, 1.5)。利用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)、显微硬度计以及电化学工作站研究了Cr含量对该高熵合金结构、组织、硬度和耐蚀性能的影响。结果表明,Cr的添加使合金由单相BCC结构转变为富Zr相与富Mo-Nb相的双相BCC结构,随着Cr含量增加,在富Zr相中还有富Cr的Laves相析出;Cr1.5MoNbTiZr合金具有最高硬度765.53 HV,这是由于第二相析出强化、固溶强化与高熵合金晶格畸变的共同作用;Cr的加入增加了CrxMoNbTiZr系高熵合金在质量分数为3.5%NaCl溶液中发生腐蚀倾向,但降低了该系高熵合金的腐蚀速率,同时发现Cr的添加存在一个临界值来保证合金的抗点蚀能力,超过这个临界值合金就会更容易发生点蚀现象。  相似文献   

19.
贾彦军  陈瀚宁  张家奇  雷剑波 《表面技术》2022,51(12):350-357, 370
目的 解决Q235钢材料在实际应用中由于磨损、腐蚀导致使用寿命缩短问题,提升Q235钢表面的硬度、耐磨性和耐蚀性。方法 利用激光熔化沉积技术在Q235钢表面制备无裂纹CoCrNiNbW高熵合金涂层。采用扫描电子显微镜、X射线光谱仪、光学显微镜表征其微观组织结构、元素分布和物相成分;采用显微硬度计、试块-试环摩擦磨损试验机分别测试高熵合金涂层和Q235钢的显微硬度和耐磨性能,研究涂层的强化机制和磨损机理;采用电化学工作站测试分析高熵合金涂层和Q235钢的电化学腐蚀行为,研究涂层的耐蚀性和腐蚀机制。结果 CoCrNiNbW高熵合金涂层的微观组织主要由等轴晶组成,涂层中部和底部存在未熔化Nb和W颗粒,起强化相作用;主要物相由富含Co、Ni的FCC相及富含Nb的BCC相组成;高熵合金涂层的平均显微硬度为800HV0.2,约为基材的4倍;涂层的磨损机制以磨粒磨损为主,磨损率为2.315´ 10–5 g.m–1,约为基材的1/5;在质量分数3.5%的NaCl溶液中,高熵合金涂层具有更好的耐腐蚀性,腐蚀电阻约为基材的8倍。结论 高熵合金涂层的显微硬度、耐磨性和耐腐蚀性较Q235钢基材有很大提升。  相似文献   

20.
采用电弧熔炼法制备FeCrMnNiAl0.1高熵合金,采用SEM、XRD、显微硬度计和万能拉伸试验机,研究退火处理升温速率和保温时间对该五元合金微观组织及力学性能的影响。结果表明,FeCrMnNiAl0.1高熵合金由FCC相、BCC相和四方结构的Cr3Ni2组成。退火保温时间延长导致合金晶格畸变程度增加,BCC组织增加;提高升温速率,BCC组织同样增加,但晶格畸变程度减小。未热处理合金硬度在190 HV左右,高熵合金的显微硬度随退火保温时间的延长而增加,但升温速率提高会使显微硬度逐渐下降。退火时保温时间延长,会使高熵合金的抗拉强度逐渐增大,而延展性逐渐变差;随升温速率增加,合金抗拉强度先减小后增大,延展性变好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号