首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 72 毫秒
1.
车内低频结构噪声是汽车NVH 特性研究的重要内容,判断低频噪声的主要来源和降低车内低频噪声水平对于控制车内噪声有着重要意义。运用声传递向量(ATV)技术,对车内低频噪声进行预测仿真,得到场点频响函数并针对该场点进行面板贡献度分析;运用模态声传递向量(MATV)技术,进行车身结构模态贡献量分析,提取贡献较大的模态结果,进而预测对场点声压影响较大的车身结构。经过车身结构改进后,车内低频噪声得到一定程度抑制。为改进车内噪声水平提供一定的参考依据。  相似文献   

2.

卡车驾驶室大多属于板梁组合的结构。传统结构修改主要采用在驾驶室相应位置增加质量、附加阻尼材料、改变面板厚度等方法。在最优改进部位未知的情况下,这些方法具有一定的盲目性。本文运用MATV技术确定驾驶员右耳处声压贡献突出的主要板件,利用边界元声学灵敏度分析确定结构中对特定声压级有主要影响的部位,从而可以对结构进行针对性修改,以达到降噪的目的。  相似文献   


3.
在新车身设计阶段,由于汽车内部诸多因素的不确定,用有限元计算声腔模态时对声腔模型进行了简化处理。对比了有无座椅和仪表盘挡板的车内声学模态结果,用边界元法进行了车内结构辐射声压计算和声贡献量分析,对改进车内噪声有一定参考。  相似文献   

4.
针对某特种车车内噪声水平较高问题,建立车身结构与声固耦合有限元分析模型,并进行车身振动频响分析和车内声压响应分析;通过仿真结果与实车道路试验结果对比,验证车身结构和声固耦合有限元模型的有效性;利用耦合声学边界元法进行驾驶室内部声学特性研究,识别出不同工况的主要噪声频率;并对影响车内噪声的车身板件进行声学贡献分析,找到对车内声压贡献最大的板件;最后对声学贡献大的板件粘贴阻尼材料来对车内进行降噪,车内噪声得到较为明显改善。  相似文献   

5.
针对某矿车驾驶室,运用矩阵求逆法计算驾驶室悬置车身侧的力,并基于耦合间接边界元法求解驾驶室耦合系统在该激励下的驾驶员右耳声压,找出关注频率。在该频率下进行面板贡献量分析,找出对场点声压主要贡献的面板。在此基础上,通过形貌优化提高顶棚的第1阶固有频率和在主要正贡献面板上加动力吸振器的方法有效地降低驾驶员右耳在80 Hz处的峰值声压,达12.82 dB。  相似文献   

6.
在ABAQUS中建立某型号轮胎的有限元模型,采用计算模态分析和实验模态分析对比,验证有限元模型的正确性,并仿真轮胎在某一路面上的滚动过程。基于声传递向量概念,结合有限元和边界元方法,利用MATV技术计算了随机激励下轮胎振动的辐射噪声响应,对轮胎辐射噪声进行分析研究。  相似文献   

7.
空压机结构辐射噪声直接给舰船声隐身性带来隐患.为研究船用某型空压机结构辐射噪声特性,采用有限元/边界元法对其进行计算分析.分别建立空压机几何三维模型、有限元动力学模型以及声学边界元模型.将曲轴转动产生的动态激励作为结构振动响应计算的原始载荷,基于有限元法求解空压机结构的振动响应.在此基础上,结合四节点插值算法将机体振动...  相似文献   

8.
在Hypermesh中建立某挖掘机驾驶室结构有限元模型。完成设置后,导入Nastrain中进行结构模态分析。在Virtual. Lab中生成声学模型,并进行声模态分析。以驾驶员左右耳作为场点,分析计算声固耦合时,场点处的声学频率响应函数。针对声压峰值所对应的频率,作面板贡献量分析。根据分析结果,对驾驶室进行优化,并验证优化效果。  相似文献   

9.
车内噪声预测与面板声学贡献度分析   总被引:14,自引:4,他引:14  
面板声学贡献度分析是汽车NVH特性研究的重要内容,识别各面板对车内场点的贡献度对于控制车内噪声有着重要意义。利用有限元结合边界元的方法,建立三维车辆乘坐室声固耦合模型,使用ANSYS软件计算出乘坐室在20-200Hz频率的声固耦合振动特性后,采用LMS Virtual.lab软件预测了驾驶员左、右耳的声压响应。并通过各壁板对驾驶员右耳声压的面板贡献度分析,得出了各壁板对驾驶员右耳总声压的贡献度,为降低车内某点噪声进行结构修改提供理论依据。通过对结构修改,有效降低了车内某点噪声。  相似文献   

10.
针对某地铁车内噪声超标问题,从车辆、轮轨两个方面展开研究,利用BrüelKj?r测试系统分析车辆的牵引、空调系统,车辆结构,轮轨粗糙度等因素对车内噪声的影响特性。研究表明,牵引、空调系统对运行车辆车内噪声影响较小。车内噪声的显著频带为400 Hz~800 Hz、1 105 Hz,与车轮非圆没有直接关系;1 105 Hz与钢轨打磨后磨痕有关。车内噪声主要与以下两个因素有关:一是透射噪声,车辆内移门存在漏风问题,车外噪声传入车内;二是结构传声,轮轨或轨道以上频段的振动激励经过轴箱-构架-车体传递,进而激励车内内装等结构振动产生辐射噪声。此研究对地铁车辆降噪有一定的参考价值。  相似文献   

11.
车身板件对车内噪声的贡献量分析   总被引:2,自引:0,他引:2  
讨论车身板件对车内空腔辐射噪声的贡献量分析.通过对声源强度和声学传递函数的乘积求和来进行某块板在目标位置声压贡献量的合成.利用互异法间接测量声学传递函数,通过截面面积和其法向加速度的乘积得到声源强度值.模拟计算前面试验边界条件建立的有限元模型,有限元计算结果和实测数据进行对比.  相似文献   

12.
基于FEM-BEM的轿车车内低频噪声综合分析方法   总被引:1,自引:0,他引:1  
使用NASTRAN和SYSNOISE软件,采用FEM声固耦合及FEM-BEM耦合方法对轿车车内低频噪声进行分析,并根据车身板件贡献量分析结果提出合理的结构修改方案,改善车内特定检测点的噪声状况。  相似文献   

13.
建立3 t叉车驾驶室的三维有限元模型,进行结构模态分析;再建立驾驶室声学有限元模型,进行声学模态分析,初步了解驾驶室的声场。对驾驶室进行谐响应分析,得到位移响应,为后续声场提供边界条件。用有限元法进行驾驶室内部声学特性研究,对驾驶员耳旁声压进行分析,得出驾驶室内声场的声学特性。在计算出场点声压频率响应的基础上,在峰值频率处进行面板贡献量分析,找出产生峰值声压的主要来源,为降低驾驶室内噪声提供依据。  相似文献   

14.
利用频谱分析和模态分析技术分析常用转速下车内噪声成分及车身各部分振动情况,确定阻尼片粘贴位置,并将条形阻尼结构应用于车内噪声控制。试验表明条形阻尼结构能有效抑制车辆行驶中的车身振动,降低车内噪声。  相似文献   

15.
建立A型地铁车体结构和车内空腔有限元模型,应用模态分析技术分别对车体结构模态和车内空间声学模态进行了研究。结构模态分析表明:车体满足结构动态设计要求,但要加强端墙刚度、车顶与侧墙连接强度,以提高其疲劳寿命。声学模态分析表明,地铁车体对称的结构特点决定车内声场在横向、纵向和垂向同样具有对称性,使车内声场的各阶模态形状基本上呈前后、左右和上下对称分布,说明车内声场共鸣频率和模态形状主要由其几何形状决定。  相似文献   

16.
摘 要: 针对某微型电动轿车驾驶室内低频噪声问题,采用有限元法计算轿车声腔声学模态,并通过模态叠加法预测驾驶室内的声学响应频响函数。进行整车的振动噪声试验,得出驾驶室内的噪声及主要测点的振动瀑布图,一定程度上佐证仿真的结果。为降低噪声辐射面板振动,运用边界元法计算车身主要板件对驾驶室内声压测点的声学贡献度,提出在板件表面粘贴阻尼片的方法,并用声固耦合方法对粘贴阻尼片后驾驶员耳边声压级进行计算,计算结果表明改进后驾驶室内噪声得到显著降低。  相似文献   

17.
建立某船用增速箱的结构有限元模型和声固耦合边界元模型。对结构有限元模型进行结构模态分析;运用边界元法对增速箱声固耦合模型进行求解。通过计算仿真分析该模型噪声在特定频域中的分布情况。基于结构模态贡献度方法对增速箱的主要噪声源进行识别并进行有效控制。可对产品的设计开发提供参考。  相似文献   

18.
驾驶室内部噪声分析与阻尼降噪   总被引:1,自引:0,他引:1  
基于有限元和边界元方法,运用ANSYS和SYSNOISE软件建立驾驶室声—固耦合有限元模型和声学边界元模型,计算在指定工况下壁板的振动和驾驶员右耳旁的声压级。在此基础上,进行面板声学贡献度分析,确定对驾驶员右耳声压贡献突出的壁板。通过采用沥青型阻尼材料对壁板进行减振降噪处理,有效地降低驾驶员右耳旁噪声。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号