首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rho-associated kinase (Rho-kinase) from chicken gizzard smooth muscle was purified to apparent homogeneity (160 kDa on SDS-polyacrylamide gel electrophoresis) and identified as the ROKalpha isoform. Several substrates were phosphorylated. Rates with myosin phosphatase target subunit 1 (MYPT1), myosin, and the 20-kDa myosin light chain were higher than other substrates. Thiophosphorylation of MYPT1 inhibited myosin phosphatase activity. Phosphorylation of myosin at serine 19 increased actin-activated Mg+-ATPase activity, i.e. similar to myosin light chain kinase. Myosin phosphorylation was increased at higher ionic strengths, possibly by formation of 6 S myosin. Phosphorylation of the isolated light chain and myosin phosphatase was decreased by increasing ionic strength. Rho-kinase was stimulated 1.5-2-fold by guanosine 5'-O-3-(thio)triphosphate.RhoA, whereas limited tryptic hydrolysis caused a 5-6-fold activation, independent of RhoA. Several kinase inhibitors were screened and most effective were Y-27632, staurosporine, and H-89. Several lipids caused slight activation of Rho-kinase, but arachidonic acid (30-50 microM) induced a 5-6-fold activation, independent of RhoA. These results suggest that Rho-kinase of smooth muscle may be involved in the contractile process via phosphorylation of MYPT1 and myosin. Activation by arachidonic acid presents a possible regulatory mechanism for Rho-kinase.  相似文献   

2.
Smooth muscle myosin bound phosphatase (MBP) purified from chicken gizzard, which is a holoenzyme of type 1 delta protein phosphatase and dephosphorylated intact myosin, catalyzed the dephosphorylation of calponin phosphorylated by protein kinase C (PK-C). The Km of MBP for calponin was 0.6 microM and the Vmax was 350 nmol/min/mg. All of the multiple sites of phosphorylation by PK-C of calponin were completely dephosphorylated by MBP. Functionally, calponin dephosphorylated by MBP recovered its inhibitory effect on the actin-activated Mg(2+)-ATPase activity of myosin. Therefore, these results suggest that a type 1 delta protein phosphatase causes relaxation of smooth muscle by the dephosphorylation not only of myosin but also of calponin.  相似文献   

3.
Both cAMP- and cGMP-dependent protein kinases inhibit agonist-stimulated phospholipase C-beta (PLC-beta) activity and inositol 1,4,5-trisphosphate-dependent Ca2+ release in vascular and visceral smooth muscle. In smooth muscle of the intestinal longitudinal layer, however, the initial steps in Ca2+ mobilization involve activation of cytosolic PLA2 (cPLA2) and arachidonic acid (AA)-dependent stimulation of Ca2+ influx. The present study examined whether cAMP- and cGMP-dependent protein kinases are capable of regulating these processes also. Agents that activated cAMP-dependent protein kinase (5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole 3',5'-cyclic monophosphothioate (Sp-isomer) and isoproterenol), cGMP-dependent protein kinase (8-(4-chlorophenylthio)-guanosine 3',5'-cyclic monophosphate and Na nitroprusside), or both kinases (vasoactive intestinal peptide and isoproterenol >1 microM) induced phosphorylation of cPLA2 and inhibition of agonist-stimulated cPLA2 activity. Phosphorylation and inhibition of cPLA2 activity by cAMP- and cGMP-dependent protein kinases were blocked by the corresponding selective inhibitors (cAMP-dependent protein kinase, N-[2(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide hydrochloride (H-89) and myristoylated protein kinase inhibitor () amide; cGMP-dependent protein kinase, (8R,9S, 11S)-(-)-9-methoxy-carbamyl-8-methyl-2,3,9,10-tetrahydro-8, 11-epoxy-1H,8H,11H,-2,7b,11a-trizadizobenzo(a,g)cycloocta(c, d, e)-trinden-1-one (KT-5823)). In contrast, AA-stimulated Ca2+ influx was inhibited by agents that activated cGMP-dependent protein kinase only; the inhibition was selectively blocked by KT-5823. The study provides the first evidence of inhibitory phosphorylation of cPLA2 in vivo by cAMP- and cGMP-dependent protein kinases. Inhibition of cPLA2 activity and AA-induced Ca2+ influx partly account for the ability of cAMP-dependent protein kinase and/or cGMP-dependent protein kinase to cause relaxation. Their importance resides in their location at the inception of the Ca2+ signaling cascade.  相似文献   

4.
5.
Desensitization or habituation to repeated or prolonged stimulation is a common property of secretory cells. Phosphorylation of receptors mediates some desensitization processes, but the relationship of phosphorylation to desensitization at postreceptor sites is not well understood. We have tested the effect of protein phosphorylation on desensitization in bovine chromaffin cells. To increase protein phosphorylation, we have used the protein phosphatase inhibitor okadaic acid at 12.5 nM, 100 microM 8-bromo-cyclic AMP to activate protein kinase A, and 10 nM phorbol 12,13-dibutyrate to activate protein kinase C. During repeated 6-s stimulation at 5-min intervals, catecholamine secretion from control cells decreases. Cells exposed to 8-bromo-cyclic AMP or okadaic acid alone show slightly decreased rates of desensitization. In cells pretreated with phorbol 12,13-dibutyrate, desensitization is blocked. Okadaic acid-treated cells stimulated in the presence of 8-bromo-cyclic AMP show potentiation of secretion with repeated stimulation. The protein kinase inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7) increases the desensitization rate. Because these phenomena are observed during secretion evoked with elevated K+ as well as by a nicotinic agonist, the effect of phosphorylation is at a postreceptor site. In contrast to desensitization to the repeated stimulations, desensitization to prolonged stimulation with high K+ is not altered by the above protocols in chromaffin cells.  相似文献   

6.
Tonic rabbit femoral artery and phasic rabbit ileum smooth muscles permeabilized with Triton X-100 were activated either by increasing [Ca2+] from pCa > 8.0 to pCa 6.0 (calcium-ascending protocol) or contracted at pCa 6.0 before lowering [Ca2+] (calcium-descending protocol). The effects of, respectively, high [MgATP]/low [MgADP] [10 mM MgATP + creatine phosphate (CP) + creatine kinase (CK)] or low [MgATP]/[MgADP] (2 mM MgATP, 0 CP, 0 CK) on the "force-[Ca]" relationships were determined. In femoral artery at low, but not at high, [MgATP]/[MgADP] the force and the ratio of stiffness/force at pCa 7.2 were significantly higher under the calcium-descending than calcium-ascending protocols (54% vs. 3% of Po, the force at pCa 6.0) (force hysteresis); the levels of regulatory myosin light chain (MLC20) phosphorylation (9 +/- 2% vs. 10 +/- 2%) and the velocities of unloaded shortening V0 (0.02 +/- 0.004 l/s with both protocols) were not significantly different. No significant force hysteresis was detected in rabbit ileum under either of these experimental conditions. [MgADP], measured in extracts of permeabilized femoral artery strips by two methods, was 130-140 microM during maintained force under the calcium-descending protocol. Exogenous CP (10 mM) applied during the descending protocol reduced endogenous [MgADP] to 46 +/- 10 microM and abolished force hysteresis: residual force at low [Ca2+] was 17 +/- 5% of maximal force. We conclude that the proportion of force-generating nonphosphorylated (AMdp) relative to phosphorylated cross-bridges is higher on the Ca2+-descending than on the Ca2+-ascending force curve in tonic smooth muscle, that this population of positively strained dephosphorylated cross-bridges has a high affinity for MgADP, and that the dephosphorylated AMdp . MgADP state makes a significant contribution to force maintenance at low levels of MLC20 phosphorylation.  相似文献   

7.
Cytosolic and microsomal protein kinase preparations from cultured chicken osteoblasts were found to phosphorylate up to six major proteins with Mrs 66, 58, 50, 36, 32, and 22 kDa in chicken bone extract. Use of heparin led to the conclusion that these proteins were predominantly phosphorylated by factor-independent protein kinase (FIPK) present both in microsomal and cytosolic preparations. It was confirmed that microsomal preparation contained predominantly FIPK, whereas cytosolic preparation contained additional kinases, that can phosphorylate the bone proteins. Use of purified chicken bone osteopontin (OPN) (58 kDa) and recombinant OPN led to the same conclusions. The identify of the protein kinases was clearly established by using a series of synthetic peptide substrates. Quantitative analysis utilizing pure protein kinases and purified chicken bone OPN, recombinant mouse OPN, and bovine bone OPN and BSP led to introduction of approximately 9 moles of phosphate/mole of OPN and 6.6 moles phosphate/mole bovine bone sialoprotein (BSP) by casein kinase II. cGMP-dependent protein kinase and protein kinase C both introduced 0.5-1.2 moles phosphate/mole of OPN and BSP, whereas cAMP-dependent protein kinase led to no significant phosphorylation of OPN or BSP. Consistent with the above results, sites of phosphorylation identified for OPN (metabolically labeled) and BSP (labeled by casein kinase II) revealed that predominant phosphorylated sites have recognition sequences for FIPK.  相似文献   

8.
Abnormal smooth muscle contraction may contribute to diseases such as asthma and hypertension. Alterations to myosin light chain kinase or phosphatase change the phosphorylation level of the 20-kDa myosin regulatory light chain (MRLC), increasing Ca2+ sensitivity and basal tone. One Rho family GTPase-dependent kinase, Rho-associated kinase (ROK or p160(ROCK)) can induce Ca2+-independent contraction of Triton-skinned smooth muscle by phosphorylating MRLC and/or myosin light chain phosphatase. We show that another Rho family GTPase-dependent kinase, p21-activated protein kinase (PAK), induces Triton-skinned smooth muscle contracts independently of calcium to 62 +/- 12% (n = 10) of the value observed in presence of calcium. Remarkably, PAK and ROK use different molecular mechanisms to achieve the Ca2+-independent contraction. Like ROK and myosin light chain kinase, PAK phosphorylates MRLC at serine 19 in vitro. However, PAK-induced contraction correlates with enhanced phosphorylation of caldesmon and desmin but not MRLC. The level of MRLC phosphorylation remains similar to that in relaxed muscle fibers (absence of GST-mPAK3 and calcium) even as the force induced by GST-mPAK3 increases from 26 to 70%. Thus, PAK uncouples force generation from MRLC phosphorylation. These data support a model of PAK-induced contraction in which myosin phosphorylation is at least complemented through regulation of thin filament proteins. Because ROK and PAK homologues are present in smooth muscle, they may work in parallel to regulate smooth muscle contraction.  相似文献   

9.
Calponin is a thin filament-associated protein which has been implicated in the modulation of the contractile state of smooth muscle via its interaction with actin and inhibition of the actin-activated myosin Mg-ATPase. This inhibitory effect is alleviated by phosphorylation of calponin at Ser175 in vitro by protein kinase C. The issue of calponin phosphorylation in intact smooth muscle in response to agonists that activate protein kinase C is controversial. We have produced a monoclonal antibody that specifically recognizes calponin phosphorylated at Ser175 and used it to analyze calponin phosphorylation in porcine coronary arterial smooth muscle stimulated with prostaglandin F2alpha or phorbol 12,13-dibutylate (PDB). Calponin phosphorylation increased rapidly in response to prostaglandin F2alpha concomitant with the increase in tension. Calponin was then dephosphorylated while force was maintained. Tension development in response to PDB was significantly slower, but again calponin phosphorylation paralleled force development. In this case, calponin dephosphorylation was very slow, consistent with prolonged activation of protein kinase C. The protein kinase inhibitors, HA1077 (1-5-(isoquinoline sulfonyl)-homopiperazine HCl) and HA1100 (1-hydroxy HA1077; 1-(hydroxy-5-isoquinoline sulfonyl-homopiperazine), inhibited tension development and calponin phosphorylation in a concentration-dependent manner with similar ED50 values in response to prostaglandin F2alpha and PDB. These results support physiological roles for calponin in force development in smooth muscle in response to agonists which trigger protein kinase C activation and in the latch state, i.e., force maintenance at low energy cost. Furthermore, the vasodilator effect of HA1077 and HA1100 is more likely due to inhibition of protein kinase C than of myosin light chain kinase.  相似文献   

10.
The small guanosine triphosphatase Rho is implicated in myosin light chain (MLC) phosphorylation, which results in contraction of smooth muscle and interaction of actin and myosin in nonmuscle cells. The guanosine triphosphate (GTP)-bound, active form of RhoA (GTP.RhoA) specifically interacted with the myosin-binding subunit (MBS) of myosin phosphatase, which regulates the extent of phosphorylation of MLC. Rho-associated kinase (Rho-kinase), which is activated by GTP.RhoA, phosphorylated MBS and consequently inactivated myosin phosphatase. Overexpression of RhoA or activated RhoA in NIH 3T3 cells increased phosphorylation of MBS and MLC. Thus, Rho appears to inhibit myosin phosphatase through the action of Rho-kinase.  相似文献   

11.
The predicted major intracellular domains of the chick and rat neuronal nicotinic acetylcholine receptor alpha 7 subunits were expressed in E. coli as glutathione-S-transferase fusion proteins. These proteins were then purified to near homogeneity by chromatography on immobilized glutathione. The intracellular domains of the alpha 7 subunit from both species were phosphorylated to high stoichiometry by cAMP-dependent protein kinase, but not by protein kinase C, cGMP-dependent protein kinase, or calcium/calmodulin-dependent protein kinase. Phosphorylation occurred on serine residues only within an identical single tryptic peptide for both proteins. This conserved phosphorylation site was identified as Ser 342 utilizing site-directed mutagenesis. These results demonstrate that the intracellular domain of the alpha 7 subunit is a substrate of PKA, and suggest a role for protein phosphorylation in mediating cellular regulation upon neuronal AChRs containing this subunit.  相似文献   

12.
Contractile performance of cardiac and skeletal muscles may be regulated by cyclic AMP or Ca2+, two second messengers that stimulate the phosphorylation of specific myofibrillar proteins. Cyclic AMP-dependent protein kinase catalyzed the rapid phosphorylation of a single site in the inhibitory subunit of cardiac troponin in vitro and in perfused hearts. Skeletal muscle troponin was not phosphorylated by this enzyme in vivo. Although there was a correlation between cardiac troponin phosphorylation and the positive inotropic response to catecholamines, a biochemical mechanism that could account for a functional relationship between the two processes has not been discovered. Phosphorylation of skeletal muscle myosin was catalyzed by myosin light chain kinase in the presence of Ca2+ and the ubiguitous, multifunctional Ca2+-dependent regulator protein (CDR). The activation of kinase activity appeared to proceed via a trimolecular reaction process in which Ca2+ bound to CDR and the Ca2+.CDR complex then interacted with the enzyme. In rat extensor digitorum longus muscle, a 1 sec tetanic contraction resulted in phosphorylation of myosin light chain with the maximal phosphate incorporated 20 sec after the contraction. The light chain phosphate content declined slowly and correlated to post-tetanic potentiation of isometric twitch tension. Phosphorylation of skeletal muscle myosin may be important in modulating contraction.  相似文献   

13.
The objective of this study was to investigate cyclic-adenosinemonophosphate (cAMP)-dependent phosphorylation in murine erythroleukemia (MEL) cells and to identify either direct substrates of cAMP-dependent kinase or downstream effectors of cAMP dependent phosphorylation with a potential function in growth and differentiation. MEL-cells rendered deficient in cAMP-dependent protein kinase (A-kinase) activity by stable transfection with DNA encoding for either a mutant regulatory subunit or a specific peptide inhibitor of A-Kinase (PKI) are unable to differentiate normally in response to chemical inducers. We have identified by 2-D Western blotting 2 phosphorylated forms of p19, a highly conserved 18-19 kDa cytosolic protein that is frequently upregulated in transformed cells and undergoes phosphorylation in mammalian cells upon activation of several signal transduction pathways. The phosphorylation of the more acidic phosphorylated form is increased in a cAMP-dependent fashion and impaired in cells deficient in cAMP-dependent kinase (A-kinase). Treatment of MEL-cells with the chemical inducer of differentiation hexamethylene-bisacetamide (HMBA) led to dephosphoryation of this phosphoform. Our data are compatible with previous observations which imply that phosphorylation of Ser 38 in p19 by p34cdc2-kinase leads to a more basic phosphoform and simultaneous phosphorylation by mitogen-activated kinase of Ser 25 in response to protein kinase C and the cAMP-dependent kinase creates the more acidic species.  相似文献   

14.
The isolated catalytic subunit of cAMP-dependent protein kinase and smooth muscle myosin light chain kinase undergo interactions with the fluorescent dye 9-anthroylcholine (9AC) that are responsive to the two enzymes' associations with substrates and effectors. Additionally, the binding of 9AC is highly sensitive to subtle structural or functional differences among closely related protein kinases. Skeletal muscle myosin light chain kinase and the catalytically active chymotryptic fragment of the gamma-subunit of phosphorylase kinase do not associate with 9AC. The 1:1 fluorescent complex of the isolated catalytic subunit of cAMP-dependent protein kinase with 9AC exhibits a dissociation constant of 21 microM. The association of the catalytic subunit with either of the regulatory subunits, RI and RII, results in decreases in the observed 9AC fluorescence that are reversed upon the addition of cAMP. The effects of MgATP and of polypeptide substrates (Kemptide, troponin I, protamine) on the 9AC-catalytic subunit complex are consistent with a general noncompetitive model in which the interactions of 9AC and the other ligands with the enzyme are mutually antagonistic but not purely competitive.  相似文献   

15.
In order to investigate the involvement of cGMP-dependent protein kinase (cGK) type II in cGMP-provoked intestinal Cl- secretion, cGMP-dependent activation and phosphorylation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels was analyzed after expression of cGK II or cGK Ibeta in intact cells. An intestinal cell line which stably expresses CFTR (IEC-CF7) but contains no detectable endogenous cGK II was infected with a recombinant adenoviral vector containing the cGK II coding region (Ad-cGK II) resulting in co-expression of active cGK II. In these cells, CFTR was activated by membrane-permeant analogs of cGMP or by the cGMP-elevating hormone atrial natriuretic peptide as measured by 125I- efflux assays and whole-cell patch clamp analysis. In contrast, infection with recombinant adenoviruses expressing cGK Ibeta or luciferase did not convey cGMP sensitivity to CFTR in IEC-CF7 cells. Concordant with the activation of CFTR by only cGK II, infection with Ad-cGK II but not Ad-cGK Ibeta enabled cGMP analogs to increase CFTR phosphorylation in intact cells. These and other data provide evidence that endogenous cGK II is a key mediator of cGMP-provoked activation of CFTR in cells where both proteins are co-localized, e. g. intestinal epithelial cells. Furthermore, they demonstrate that neither the soluble cGK Ibeta nor cAMP-dependent protein kinase are able to substitute for cGK II in this cGMP-regulated function.  相似文献   

16.
Cyclic GMP phosphodiesterase, a key enzyme in phototransduction, is composed of P alpha beta and two P gamma subunits. Interaction of P gamma with P alpha beta or with the alpha subunit (T alpha) of transducin is crucial for the regulation of cGMP phosphodiesterase in retinal photoreceptors. Here we have investigated phosphorylation of P gamma by cAMP-dependent protein kinase and its functional effect on the P gamma interaction with P alpha beta or T alpha in vitro. P gamma, but not P gamma complexed with T alpha (both GTP and GDP forms), is phosphorylated. Measurement of 32P radioactivity in phosphorylated P gamma, analysis of phosphorylated P gamma by laser mass spectrometry, identification of phosphoamino acid, and phosphorylation of mutant forms of P gamma indicate that only threonine 35 in P gamma is phosphorylated. Phosphorylation of P gamma mutants also reveals that the C and N terminals of P gamma which are required for the regulation of P alpha beta functions are not involved in the P gamma phosphorylation but that arginine 33, which is ADP-ribosylated by an endogenous ADP-ribosyltransferase, is required for the phosphorylation. Phosphorylated P gamma has a higher inhibitory activity for trypsin-activated cGMP phosphodiesterase than nonphosphorylated P gamma, indicating that the P gamma-P alpha beta interaction is affected by P gamma phosphorylation. Nonphosphorylated P gamma inhibits both the GTPase activity of T alpha and the binding of a hydrolysis-resistant GTP analogue to T alpha, while P gamma phosphorylation reduces these inhibitory activities. These observations suggest that a P gamma domain containing threonine 35 is involved in the P gamma-T alpha interaction, and P gamma phosphorylation regulates the P gamma-T alpha interaction. Our observation suggests that P gamma phosphorylation by cAMP-dependent protein kinase may function for the regulation of phototransduction in vertebrate rod photoreceptors.  相似文献   

17.
The rate of release of inorganic phosphate (Pi) from cycling cross-bridges in rabbit portal-anterior mesenteric vein smooth muscle was determined by following the fluorescence of the Pi-reporter, MDCC-PBP (Brune, M., J. L. Hunter, S. A. Howell, S. R. Martin, T. L. Hazlett, J. E. T. Corrie, and M. R. Webb. 1998. Biochemistry. 37:10370-10380). Cross-bridge cycling was initiated by photolytic release of ATP from caged-ATP in Triton-permeabilized smooth muscles in rigor. When the regulatory myosin light chains (MLC20) had been thiophosphorylated, the rate of Pi release was biphasic with an initial rate of 80 microM s-1 and amplitude 108 microM, decreasing to 13.7 microM s-1. These rates correspond to fast and slow turnovers of 1.8 s-1 and 0.3 s-1, assuming 84% thiophosphorylation of 52 microM myosin heads. Activation by Ca2+-dependent phosphorylation subsequent to ATP release resulted in slower Pi release, paralleling the rate of contraction that was also slower than after thiophosphorylation, and was also biphasic: 51 microM s-1 and 13.2 microM s-1. These rates suggest that the activity of myosin light chain kinase and phosphatase ("pseudo-ATPase") contributes <20% of the ATP usage during cross-bridge cycling. The extracellular "ecto-nucleotidase" activity was reduced eightfold by permeabilization, conditions in which the ecto-ADPase was 17% of the ecto-ATPase. Nevertheless, the remaining ecto-ATPase activity reduced the precision of the estimate of cross-bridge ATPase. We conclude that the transition from fast to slow ATPase rates reflects the properties and forces directly acting on cross-bridges, rather than the result of a time-dependent decrease in activation (MLC20 phosphorylation) occurring in intact smooth muscle. The mechanisms of slowing may include the effect of positive strain on cross-bridges, inhibition of the cycling rate by high affinity Mg-ADP binding, and associated state hydrolysis.  相似文献   

18.
Ejaculated ram sperm were demembranated with Triton X-100, separated from the detergent-soluble matrix, and reactivated [San Agustin and Witman (1993): Cell Motil. Cytoskeleton 24:264-273]. The percent motility of models prepared from freshly washed sperm was comparable to that of the washed sample before demembranation, regardless of whether cAMP was included in the reactivation medium. However, demembranated models derived from aging or metabolically inhibited sperm exhibited a lower percent reactivation and required cAMP to attain the level of motility of freshly washed sperm. Cyclic AMP was approximately 100 times more effective than cGMP. The requirement for cAMP could be bypassed by addition of porcine heart cAMP-dependent protein kinase (PKA) catalytic subunit to the reactivation medium, demonstrating that cAMP was acting via PKA. The cAMP stimulation of reactivation was not affected by inclusion of the PKA inhibitor PKI(5-24) in the reactivation medium, but was decreased when the models were preincubated with PKI(5-24) prior to reactivation. The cytosol-free models retained > 90% of the sperm PKA activity; therefore, the PKA appears to be anchored to internal sperm structures. This PKA could not be extracted by cAMP or Triton X-100 alone, but only by cAMP and Triton X-100 in combination. We conclude that cAMP-dependent protein phosphorylation is critical for sperm motility, but that the essential protein phosphate sites turn over slowly under our reactivation conditions, so that the cAMP requirement is apparent only in models prepared from sperm having a low internal ATP or cAMP content. Interestingly, reactivation was rapidly blocked by the peptide arg-lys-arg-ala-arg-lys-glu, which has been reported to be a selective inhibitor of cGMP-dependent protein kinase.  相似文献   

19.
Effects of acetylcholine (ACh) on the L-type calcium current were examined in isolated atrioventricular nodal cells that exhibited spontaneous contractions. ACh (0.1 to 10 microM) inhibited basal calcium current dose-dependently. This inhibition was eliminated by dialysis with 8Br cAMP or cAMP-dependent kinase inhibitory peptide. Both extracellular N-ethylmaleimide 50 microM and intracellular GDPssS 0.2 mM abolished the ACh effect. Dialysis with cGMP or NG-monomethyl-L-arginine did not significantly affect ACh inhibition of basal calcium current. Similarly, cGMP-dependent protein kinase inhibitor KT5823 (1 microM) and the type II phosphodiesterase inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine (30 microM) did not attenuate the ACh effect. Therefore, ACh inhibits the basal calcium current in the atrioventricular node mainly by suppressing cAMP synthesis through the inhibitory GTP-binding protein.  相似文献   

20.
Nitric oxide (NO) acts via soluble guanylyl cyclase to increase cyclic GMP (cGMP), which can regulate various targets including protein kinases. Western blotting showed that type II cGMP-dependent protein kinase (cGK II) is widely expressed in various brain regions, especially in the thalamus. In thalamic extracts, the phosphorylation of several proteins, including cGK II, was increased by exogenous NO or cGMP. In vivo pretreatment with a NO synthase inhibitor reduced the phosphorylation of cGK II, and this could be reversed by exogenous NO or cGMP. Conversely, brainstem electrical stimulation, which enhances thalamic NO release, caused a NO synthase-dependent increase in the phosphorylation of thalamic cGK II. These results indicate that endogenous NO regulates cGMP-dependent protein phosphorylation in the thalamus. The activation of cGKII by NO may play a role in thalamic mechanisms underlying arousal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号