首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Broadband communication systems of the current generation are likely to offer higher bit rates for delivering high-speed multimedia services to the end users. The achievable capacity and data rate of wireless communication systems are limited to fading channels varying with time, leading to multiple access interference (MAI) and multipath interference (MPI). In this paper, we investigate downlink single-input multiple output transmission for complementary coded code-division multiple access (CC-CDMA) systems working in channels with multipath fading. Here, parallel interference cancellation is employed for analysis of CC-CDMA with different frequency domain equalization schemes to eliminate MPI and MAI over multipath fading channels. Error rate analysis for CC-CDMA employing receiver diversity is assessed using simulations under varying channel parameters. Further, we compare different equalization schemes to show the superiority of regularized zero forcing in reducing the error rate of CC-CDMA systems.  相似文献   

2.
In this paper, we investigate the performance of an adaptive multistage detection scheme for direct‐sequence code‐division multiple‐access (DS‐CDMA) systems. The first stage consists of an adaptive multiuser detector which is based on the linear constrained minimum variance (LCMV) criterion. The interference cancellation (IC) occurs in the second stage. The performance of the iterative receiver over both flat and frequency‐selective fading channels is investigated and compared to the single‐user bound. In all cases, and under heavy system loads with near‐far problems, the iterative receiver is shown to offer substantial performance improvement and large gain in user‐capacity relative to the standard LCMV. In flat‐fading channels, our results show that the performance of the iterative detector is very close to the single‐user bound. For the frequency‐selective channel, this performance is noted to be in the order of 1 dB far from the single‐user bound. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Noncoherent and coherent multicode direct-sequence code-division multiple access (DS-CDMA) systems with successive interference cancellation (SIC) for multimedia reverse links over frequency-selective fading channels are studied. Followed by a RAKE receiver, the SIC scheme is applied for combating the multiple access interference. The bit error rate (BER) using the SIC technique over Nakagami-m fading channels is derived. Simulation results show that the multicode DS-CDMA system with SIC has demonstrated better performance than that without SIC under the multipath fading environment, while their corresponding numerical results from performance analyses are also provided for verifications. Furthermore, the coherent receiver could achieve a more satisfactory BER than the noncoherent counterpart at the expense of synchronization.  相似文献   

4.
Iterative power control for imperfect successive interference cancellation   总被引:1,自引:0,他引:1  
Successive interference cancellation (SIC) is a technique for increasing the capacity of cellular code-division multiple-access (CDMA) systems. To be successful, SIC systems require a specific distribution of the users' received powers, especially in the inevitable event of imperfect interference cancellation. This apparent complication of standard CDMA power control has been frequently cited as a major drawback of SIC. In this paper, it is shown that surprisingly, these "complications" come with no additional complexity. It is shown that 1-bit UP/DOWN power control-like that used in commercial systems-monotonically converges to the optimal power distribution for SIC with cancellation error. The convergence is proven to within a discrete step-size in both signal-to-noise plus interference ratio and power. Additionally, the algorithm is applicable to multipath and fading channels and can overcome channel estimation error with a standard outer power control loop.  相似文献   

5.
Modern wireless communications require an efficient spectrum usage and high channel capacity and throughput. Multiple-input and multiple-output (MIMO), Linear equalizers, multi-user detection and multicarrier code-division multiple access (MC-CDMA) are possible solutions to achieve spectral efficiency, high channel capacity, eliminate multiple access interference (MAI), eliminate Inter symbol interference (ISI) and robustness against frequency selective fading. In this paper, we combine all these techniques and investigate BER performance. We propose a low complexity receiver structure for Single-input Multiple-output (SIMO) downlink MC-CDMA systems. It employs an interference cancellation scheme to suppress the interference caused by the multipath fading channel. Also, the proposed scheme is developed for MIMO MC-CDMA system. The performance analysis of Downlink MIMO MC-CDMA systems with V-BLAST over frequency selective fading channel is investigated under various number of transmit and receive antennas. The simulation results show proposed SIMO equalization with parallel interference cancellation scheme is effective in reducing the ISI and the MAI. It improves the performance significantly and the simulation results show that MIMO MC-CDMA with V-BLAST multi-user detection provides high data rate and the BER significant improvement.  相似文献   

6.
In this paper, we consider non-orthogonal multiple access (NOMA) for wireless ad hoc networks over block fading channels where the performance is limited by interference and fading. In order to provide a reasonable performance, we can use re-transmission and interference cancellation techniques. Re-transmission techniques can provide a diversity gain over fading channels, while the successive interference cancellation (SIC) can improve the signal to interference ratio (SIR). Using the information outage probability, we show that the NOMA approach with re-transmissions can perform better than the orthogonal multiple access (OMA) approach with re-transmissions when the signal to noise ratio (SNR) is low. It is also shown that the outage probability of the NOMA with SIC is lower than that of OMA when the rate is sufficiently low where SIC can be facilitated.  相似文献   

7.
CDMA蜂窝移动通信系统是一种采用多址技术的通信系统,即采用不同的地址码来区分用户、基站和信道。然而由于其在多径衰落信道中的自相关和互相关特性的不理想造成了多址干扰。在扩频通信系统的下行链路中,有效地抵消多址干扰是进一步改善系统性能和提高系统容量的重要途径。本文提出一种应用于CDMA下行链路的干扰抵消算法,分析了下行链路接收机的实现原理及过程,并对其中的关键算法进行了详细地分析,仿真结果表明,所选取的下行接收算法能改善系统的性能。  相似文献   

8.
Modern wireless communications require an efficient spectrum usage and high channel capacity and high throughput. Turbo code, linear equalizers, multi-user detection and wideband code-division multiple access (WCDMA) are possible solutions to achieve spectral efficiency, high channel capacity, eliminate MAI, eliminate ISI and robustness against frequency selective fading. In this paper, we combine all these techniques and investigate BER performance. We propose a low complexity receiver structure for Single-input Single-output downlink cyclic prefix CP-WCDMA systems. It employs frequency domain interference cancellation schemes to mitigate the interference caused by the multipath fading channel. Also, the proposed scheme is developed for the downlink Turbo code CP-WCDMA system to maximize the throughput of the proposed system.  相似文献   

9.
Performance of Multicarrier CDMA With Successive Interference Cancellation in a Multipath Fading Channel A high-capacity, low-complexity, and robust system design for a successive interference cancellation (SIC) system is developed and analyzed. Multicarrier code-division multiple access (MC-CDMA) is used to suppress multipath and to overcome the multipath channel estimation problem in single-carrier SIC systems. In addition, an optimal power control algorithm for MC-CDMA with SIC is derived, allowing analytical bit-error rate expressions to be found for an uncoded system. Low-rate forward error-correcting codes are then added to the system to achieve robustness. It is found that the capacity of the coded system approaches the additive white Gaussian noise capacity for SIC, even in a fading multipath channel with channel estimation error. This indicates that MC-CDMA is very attractive for systems employing SIC.  相似文献   

10.
《Signal processing》2007,87(9):2251-2259
Relying on mutual orthogonality between subcarriers of different users in orthogonal frequency-division multiple access (OFDMA) systems and mutual orthogonality between spreading codes in code-division multiple-access (CDMA) systems, a novel transmitter design is proposed for group layered space–frequency block code (GLSFBC)–OFDM–CDMA communication systems over frequency-selective fading channels. The proposed method is based on a three-level design of user codes: the top level (based on OFDMA) deals with group interference and intersymbol interference (ISI), the middle level (based on space–frequency block coding) results in space–frequency diversity, and the lower level (based on CDMA) handles multiuser interference. The new approach only needs one receive antenna to distinguish multiple users and suppress group interference simultaneously, so the complexity of the receiver decreases remarkably. Simulation results confirm the validity of the proposed technique.  相似文献   

11.
WCDMA下行链路的性能受到信道衰落和多址干扰的影响。本文提出一种带时空编码的WCDMA下行链路MMSE接收机,可以在减小信道衰落的同时达到抑制多址干扰的目的。应用高斯近似法对接收机性能进行了分析。仿真结果表明,该接收机能使系统性能得以较大提高。  相似文献   

12.
This paper considers direct‐sequence code‐division multiple‐access with zero‐correlation zone sequences (ZCZ‐CDMA) and orthogonal frequency‐division multiple‐access (OFDMA) schemes using M‐ary QAM signaling for broadband wireless communications. Their system structures, complexities and performances in both AWGN and multipath frequency‐selective fading channels are evaluated and compared. For ZCZ‐CDMA, joint suppression of the multipath fading interference and multiple‐access interference can be achieved with a reduced family‐size of the spreading sequences. For OFDMA, analytical and simulation results indicate that it has the same performance as ZCZ‐CDMA in fast time‐varying multipath fading channels. In time‐invariant or slowly time‐varying channels, where the channel information can be made available to transmitters, OFDMA outperforms ZCZ‐CDMA, offers a higher capacity and is more flexible for system reconfiguration with a comparable computational complexity. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Parallel Interference Cancellation in Multiuser CDMA Channel Estimation   总被引:1,自引:0,他引:1  
Parallel interference cancellation (PIC) based channel parameter estimators for frequency selective fading channels are proposed for the uplink in code-division multiple-access (CDMA) mobile communication systems. The performance of PIC based algorithms depends heavily on the quality of the multiple-access interference estimates, which can be improved by using adaptive channel estimation filters. The performance of two adaptive complex channel coefficient estimation filters has been verified in a fading channel by computer simulations. According to the results, the PIC based adaptive channel estimators outperform clearly conventional, successive interference cancellation, and decorrelation based adaptive channel estimators. The PIC method is also used in delay tracking. By using the principles of sample-correlate-choose-largest (SCCL) delay trackers, a robust algorithm for multiuser delay tracking in fading channels is obtained.  相似文献   

14.
第三代移动通信系统中,多用户检测技术是克服多址干扰(MAI)、增加系统容量的有效方法。本文针对多径衰落信道下的直扩码分多址(DS—CDMA)系统的上行链路,基于等效扩频码组Gram—Schmitz正交化与串行干扰消除(SIC),提出了等效同步多用户检测(ESMUD)算法。分析最大比合并瑞克(RAKE)接收算法、传统的SIC算法以及本文算法的复杂度,并对三种算法的性能进行数值仿真。结果表明,本文提出的算法能有效抑制MAI,且计算复杂度与传统SIC算法在同一量级上。  相似文献   

15.
In this paper, we propose a new downlink transmit antenna processing (TAP) technique for code division multiple access (CDMA) equipped with multiple transmit antennas. In order to find the weight vectors for downlink signals, a minimum mean square error (MMSE) performance criterion is used. Since the multiuser interference is taken into account in the calculation of the weighting vectors for TAP, the proposed method is a multiuser downlink TAP method. It is assumed that the downlink channels are known by the downlink TAP. For given channel conditions, the optimal weight vectors are found with a closed-form expression under both flat and frequency-selective fading channel assumptions.  相似文献   

16.
This article outlines a multiple access scheme in which interleaving is the only means of user separation. As a special form of CDMA, the new scheme inherits many advantages of CDMA, such as dynamic channel sharing, mitigation of cross-cell interference, asynchronous transmission, ease of cell planning, and robustness against fading. Furthermore, it allows a low-cost interference cancellation technique applicable to systems with large numbers of users in multipath channels. Performance close to theoretical limits has been observed based on an unequal power control strategy.  相似文献   

17.
A so-termed chip-interleaved block-spread (CIBS) code division multiple access (CDMA) system has been introduced for cellular applications in the presence of frequency selective multipath channels. In both uplink and downlink operation, CIBS-CDMA achieves multiuser-interference (MUI) free reception within each cell. This paper focuses on the cellular downlink configuration and compares CIBS-CDMA against the conventional direct-sequence (DS) CDMA system, which relies on a chip equalizer to restore code orthogonality and, subsequently, suppresses MUI by despreading. We provide a unifying framework for both systems and investigate their performance in the presence of intercell interference and soft-handoff operation. Extensive comparisons from load, performance, complexity, and flexibility perspectives illustrate the merits, along with the disadvantages, of CIBS-CDMA over DS-CDMA, and reveal its potential for future wireless systems.  相似文献   

18.
The bit error rate (BER) expression for a proposed pipelined successive interference cancellation (PSIC) scheme in a direct sequence/code division multiple access (DS/CDMA) system is derived analytically. The proposed PSIC scheme is a pipelined modification of a successive interference cancellation (SIC) scheme. The numerical results show that the proposed PSIC scheme outperforms the SIC scheme in viewpoints of the BER and the decoding delay performances  相似文献   

19.
This work considers asynchronous time division code division multiple access (TD-CDMA) systems with RAKE receivers and one stage of parallel interference cancellation (PIC) or serial interference cancellation (SIC). A general method based on the concept of spherically symmetric signals is presented for the evaluation of the average probability of error of uncoded TD-CDMA systems. Slow frequency-hopping (SFH) with frequency overlap (FO) between adjacent carriers and interference cancellation are also included in the analysis, which considers the multipath Rayleigh fading channel (which models indoor and outdoor vehicular radio propagation). We analyze quadrature phase shift keying (QPSK) modulation with coherent demodulation and multipath (frequency) diversity with maximal ratio combining (MRC). Power control, adaptive SFH, and interference cancellation are employed for improving the bit-error rate (BER) performance. It is found that the scheme with SFH, in spite of the FO, always improves the performance substantially, and interference cancellation, in general, provides the highest BER improvement  相似文献   

20.
Adaptive receiver structures for asynchronous CDMA systems   总被引:10,自引:0,他引:10  
Adaptive linear and decision feedback receiver structures for coherent demodulation in asynchronous code division multiple access (CDMA) systems are considered. It is assumed that the adaptive receiver has no knowledge of the signature waveforms and timing of other users. The receiver is trained by a known training sequence prior to data transmission and continuously adjusted by an adaptive algorithm during data transmission. The proposed linear receiver is as simple as a standard single-user detector receiver consisting of a matched filter with constant coefficients, but achieves essential advantages with respect to timing recovery, multiple access interference elimination, near/far effect, narrowband and frequency-selective fading interference suppression, and user privacy. An adaptive centralized decision feedback receiver has the same advantages of the linear receiver but, in addition, achieves a further improvement in multiple access interference cancellation at the expense of higher complexity. The proposed receiver structures are tested by simulation over a channel with multipath propagation, multiple access interference, narrowband interference, and additive white Gaussian noise  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号