首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents penta-notched UWB antenna with sharp frequency edge selectivity using combination of SRR, CSRR, and DGS to reject the WiMAX (3.30–3.60 GHz), lower WLAN (5.150–5.350 GHz), upper WLAN (5.725–5.825 GHz), downlink of X-band satellite communication (7.0–7.40 GHz), and the uplink of X-band satellite communication (8.10–8.50 GHz) frequency bands. All these frequency bands lie within the UWB frequency spectrum. The proposed antenna is suitable for portable communication applications due to its compact dimensions. It sharply notches the existing frequency bands to mitigate the interference caused by nearby wireless communication systems within UWB frequency range. The sharp notching is achieved by the combination of complementary split ring resonators (CSRR) on the radiating semi-circular patch, split ring resonators (SRR) placed at the junction of the feedline, and a pair of defected ground structures (DGS). All notched bands can be well controlled and shifted and the equivalent lumped model of the notched bands are also developed for validation. The proposed antenna simulated, and measured results show better performance over the present state-of-the-art designs. The proposed penta-notched UWB antenna possesses better reflection coefficient, VSWR, stable gain, and small foot print. The proposed antenna has a nearly omnidirectional radiation pattern in the passbands.  相似文献   

2.
It is demonstrated that the resonant frequency of split ring resonators (SRRs) can be tuned using varactor diodes. The resulting particle, which is called a varactor-loaded split ring resonator (VLSRR), is applied to the design of a tunable notch filter at S-band. The device consists on a microstrip transmission line with VLSRRs placed at both sides of the conductor strip. Owing to the proximity of the particles to the line the rings are excited and a transmission notch arises. It is shown that simply using two VLSRRs pairs, rejection levels above 20 dB are achieved in a 0.5 GHz tuning interval centred at 2.85 GHz. The proposed device is the first tunable notch filter based on SRRs.  相似文献   

3.
A CPW fed metamaterial inspired Quadband circularly polarized antenna is presented in this article. The proposed antenna consists of defected ground structure with a radiating stub, which is at opposite side of the feedline. A waveguide mode of analysis is carried out for split ring resonator (SRR) and complimentary split ring resonator (CSRR) to enhance the properties of metamaterials. The proposed antenna analysis is taken iteration wise and used FR-4 Material as the substrate material with Ɛr = 4.4 and analysed using ANSYS electromagnetic desktop. The designed antenna projecting the peak gain of 4.8 dB and it is working in the application bands of WLAN/ISM/Bluetooth at 2.4 GHz, 5.8 GHz and 3.35 WiMAX band, X-band downlink satellite communication system (7.25–7.75 GHz) and ITU band (8–8.5 GHz) with fractional bandwidth of about 70%. Proposed antenna exhibits circular polarization at 2.39–2.55 GHz, 3.05–3.1 GHz, 4–5 GHz and 6.3–6.64 GHz respectively. To know the signal integrity of the antenna, time domain analysis is carried out for identical antennas in two conditions (face to face and side by side) with the help of CST microwave studio. The designed antenna showing excellent correlation in measurements with respect to simulation results.  相似文献   

4.
ABSTRACT

A compact planar Ultrawideband (UWB) monopole antenna with quadruple band notch characteristics is proposed. The proposed antenna consists of a notched rectangular radiating patch with a 50 Ω microstrip feed line, and a defected ground plane. The quadruple band notched functions are achieved by utilising two inverted U-shaped slots, a symmetrical split ring resonator pair (SSRRP) and a via hole. The fabricated antenna has a compact size of 24 mm × 30 mm × 1.6 mm with an impedance bandwidth ranging from 2.86 to 12.2 GHz for magnitude of S11 < ?10 dB. The four band notched characteristics of proposed antenna are in the WiMAX (worldwide interoperability for microwave access) band (3.25–3.55 GHz), C band (3.7–4.2 GHz), WLAN (wireless local area network) band (5.2–5.9 GHz) and the downlink frequency band of X band (7–7.8 GHz) for satellite communication are obtained. The measured and simulation results of proposed antenna are in good agreement to achieve impedance matching, stable radiation patterns, constant gain and group delay over the operating bandwidth.  相似文献   

5.
A novel compact stop band filter consisting of a 50 /spl Omega/ coplanar waveguide (CPW) with split ring resonators (SRRs) etched in the back side of the substrate is presented. By aligning SRRs with the slots, a high inductive coupling between line and rings is achieved, with the result of a sharp and narrow rejection band in the vicinity of the resonant frequency of the rings. In order to widen the stop band of the filter, several ring pairs tuned at equally spaced frequencies within the desired gap are cascaded. The frequency response measured in the fabricated prototype device exhibits pronounced slopes at either side of the stop band and near 0 dBs insertion loss outside that band. Since SRR dimensions are much smaller than signal wavelength, the proposed filters are extremely compact and can be used to reject frequency parasitics in CPW structures by simply patterning properly tuned SRRs in the back side metal. Additional advantages are easy fabrication and compatibility with MMIC or PCB technology.  相似文献   

6.
5.2 GHz notched ultra-wideband antenna using slot-type SRR   总被引:2,自引:0,他引:2  
Kim  J. Cho  C.S. Lee  J.W. 《Electronics letters》2006,42(6):315-316
A band notch characteristic using a slot-type split ring resonator (SRR) working at microwave frequencies is used for designing a UWB antenna requiring the rejection of some frequency band, which is already in use by existing wireless services. The slot-type SRR is employed effectively for notching unwanted frequency band such as that for WLAN service, since it can be implemented with a small dimension and in a high Q operation similarly to the conventional strip-type SRR. Based on the simulation and measurement results, a band notched UWB antenna using a slot-type SRR is very effective in rejecting unwanted frequency in terms of its selectivity and small real estate.  相似文献   

7.
A compact dual band-notched Ultra-wideband (UWB) circular monopole antenna that has two parasitic resonators in the ground plane is presented in this paper. The Inverted–U and Iron shaped parasitic resonators are located on the back side of the radiating patch to achieve the band rejection characteristics from 5 to 5.4 GHz for WLAN and 7.8 to 8.4 GHz for ITU band respectively. By cutting a rectangular slot on the ground plane, additional resonance is excited at the higher frequency band, and hence much wider impedance bandwidth can be attained. Applications of the proposed dual band-notched ultra-wideband (UWB) antenna structure with 5.2 GHz and 8.2 GHz center frequencies are demonstrated experimentally. Measured and simulated results of the magnitude of S11, radiation patterns and realized gains show good agreement.  相似文献   

8.
This article presents a novel design of circularly polarised microstrip antenna based on a metamaterial reflection plane and a half-wave antenna. The metamaterial is composed of two pieces of substrates coated on one side with split ring resonators. Both the experimental and simulated results show that good circularly polarised radiation performances are obtained. The 10?dB return-loss impedance bandwidth and 3?dB axial ratio bandwidth of proposed antenna are 12% and 7%, respectively, and the gain of proposed antenna compared with the half-wave antenna is improved from 6?dB to 9?dB in the design frequency range.  相似文献   

9.
基于双开口-互补开环谐振器的缺陷地结构(DGS),设计了一个结构紧凑的基片集成波导(SIW)超宽带带通滤波器。通过调整蚀刻在SIW底面的双开口-互补开环谐振器,SIW表面的共面波导与腔体之间的耦合,同时在阻带获得3个传输零点,以得到较好的频率选择性和良好的带外抑制。经过仿真优化及实物制作,测试结果表明,该滤波器工作在7.2GHz,相对带宽28%,带外抑制良好,仿真与测试结果吻合。  相似文献   

10.
We propose a slot antenna consisting of a rectangular slot on the ground plane, fed by a microstrip line with a rectangular‐ring‐shaped tuning stub that can be deployed in ultra‐wideband (UWB) communication systems to avoid interference with wireless local area network (WLAN) communication. Our antenna can achieve a single band‐notched property from the 5 GHz frequency to the 6 GHz frequency owing to a controllable band notch that uses L‐ and J‐shaped parasitic elements. The antenna characteristics can be modified to tune the band‐notched property (4 GHz to 5 GHz or 6 GHz to 7 GHz) and the bandwidth of the band notch (1 GHz to 2 GHz). Furthermore, the shifted notch with enhanced width of the band notch from 1 GHz to 1.5 GHz is described in this paper. The UWB slot antenna and L‐ and J‐shaped parasitic elements also provide the band‐rejection function for reference in the WiMAX (3.5 GHz) and WLAN (5 GHz to 6 GHz) regions of the spectrum. Experiment results evidence the return loss performance, radiation patterns, and antenna gains at different operational frequencies.  相似文献   

11.
研究加载左手超介质覆层对天线性能改进为目的,基于传统的开口谐振环和金属杆的变形组合,设计出一种等效介电常数和磁导率均小于0的多左手频带超介质覆层。将此覆层加载在工作频段为5.15-5.35GHz,5.725-5.825GHz的WLAN微带天线上,天线工作频率降低且辐射方向图得到了良好的改善。HFSS和MATLAB仿真结果表明,设计的左手超介质覆层在2-3.5GHz, 3.8-7.3GHz和7.5-12GHz三个频段具有左手特性,WLAN双频天线在加载双层左手超介质覆层后,工作频率分别降低了0.04GHz和0.09GHz,其最大增益分别提高了1dB和1.4dB,从而验证了设计的正确性。同时为设计性能更为优良的左手超介质覆层天线提供了新思路。  相似文献   

12.
Circular monopole antenna for ultra-wide band applications with notch band transition from WLAN to WiMAX is presented. The proposed antenna rejects WiMAX band (3.3–3.8 GHz). Antennas utilises modified mushroom-type electromagnetic band gap (EBG) structures to achieve band-notched designs. The proposed inductance enhanced modified EBG structures are 34 % compact than the conventional mushroom EBG structures. The band notched antenna designs using EBG structures have advantages like notch-frequency tuning, antenna design independent approach and omnidirectional radiation pattern. The step wise effect of inductance enhancement and tuning of notch from WLAN band (5–6 GHz) to WiMAX band is shown. Effect of variation of EBG structure parameters on which notched frequency depends is investigated. The proposed antenna has been fabricated on low cost FR4 substrate with overall dimensions as (42 × 50 × 1.6) mm3. Measured results are in good agreement with simulated ones.  相似文献   

13.

In this paper authors present the design and analysis of split ring resonator based multiband antenna for wireless applications with frequency-band reconfigurable features. The proposed design has octagonal shape SRR structure fed at vertex as radiating section and rectangular shape switchable slotted ground part. The antenna has dimensions of 44?×?39?×?1.6 mm3 and fabricated on FR4 substrate. The proposed structure exhibit hexa operating resonance characteristics at 3.3, 5.0, 5.8, 6.6, 9.9 and 15.9 GHz to cover the wireless standards at lower WiMAX, upper WLAN, super extended C-band, middle X band and lower KU band respectively. Antenna achieve the frequency band reconfigurability characteristics by inserting PIN diode in slotted ground (reclined L-shaped) as triple/hexa resonant bands during OFF/ON switching state of PIN diode. An acceptable gain, stable and consistent radiation patterns with low cross polarization and good impedance matching are obtained at targeted frequency bands of proposed design.

  相似文献   

14.
梁青  王超  苏正东  熊伟 《压电与声光》2020,42(3):423-427
该文设计了一种具有四陷波及可重构特性的超宽带天线。通过在天线辐射贴片、微带馈线上刻蚀U形槽,以及在改进型地板上添加环形开口寄生单元来实现天线四陷波特性。采用在陷波结构中加入PIN二极管开关的方法实现陷波可重构特性,通过开关的断开与闭合,分别实现三陷波和四陷波特性,从而进一步提高了超宽带频段的利用率。分析了天线陷波产生的原理,研究了天线部分尺寸参数对陷波的影响。通过仿真和实物测量结果对比表明,该天线在3~11.74 GHz频段内可有效抑制窄带系统的干扰。天线尺寸为24 mm×16 mm×0.8 mm,结构较紧凑,可广泛用于各种超宽带通信系统。  相似文献   

15.
A new dual-frequency dual-polarized array antenna for airborne applications is presented in this paper. Two planar arrays with thin substrates (R/T Duroid 5880 substrate, with εr = 2.2 and a thickness of 0.13 mm) are integrated to provide simultaneous operation at S band (3 GHz) and X band (10 GHz). Each 3 GHz antenna element is a large rectangular ring-resonator antenna, and has a 9.5 dBi gain that is about 3 dB higher than the gain of an ordinary ring antenna. The 10 GHz antenna elements are circular patches. They are combined to form the array with a gain of 18.3 dBi, using a series-fed structure to save the space of the feeding line network. The ultra-thin array can be easily placed on an aircraft's fuselage, due to its lightweight and conformal structure. It will be useful for wireless communication, radar, remote sensing, and surveillance applications.  相似文献   

16.
This work presents a compact and conformal frequency reconfigurable antenna for automotive applications. The antenna is designed on a liquid crystal polymer substrate of footprint 40 × 30 × 0.1 mm3. The proposed antenna is having coplanar waveguide feeding with a circular ring radiating element and a pair of parasitic circular elements to obtain the multiband operation. The proposed antenna is studied for frequency reconfigurable characteristics by placing the PIN diodes as switching elements in the desired locations and obtained the reconfigurability in the 4.5–6.5 GHz region. Further, the bending effects of the antenna with respect to its operating bands and the conformal effects with PIN diodes for the reconfigurable performance make this study a trailblazing work. The simulated and measured results describe that the on-glass conformal antenna is covering 1.58–2.33 (GPS, PCS, GSM1800/1900), 3.22–3.7 (WiMAX), and 4.25–6.8 GHz (WLAN, DSRC, WAVE, V2X) bands for vehicular communications with various switching cases. The obtained gain varies from 3.2 to 4.1 dB in the boresight direction and 6.9 to 9.8 dB in the lateral directions of the vehicle with placement on the vehicle body. As per the obtained results, the antenna is suitable to use for conformal usage on the windshield glass of the vehicle for connected driving scenarios.  相似文献   

17.
In this letter, open complementary split ring resonators (OCSRRs) are introduced for the first time. Such resonators are the dual counterparts of the open split ring resonators (OSRRs), introduced in 2004 by some of the authors, and consist on a pair of concentric hooks etched on a metal layer in opposite orientation. It is shown in the letter that OCSRRs can be modeled by means of an LC parallel resonant tank and that this particle roughly exhibits half the resonance frequency of the complementary split ring resonator (CSRR), hence being electrically very small. The interest of these resonators is illustrated through their application to a wideband coplanar waveguide band pass filter.  相似文献   

18.
设计了一种超材料三维模型,由闭合方环和4个开口谐振方环通过正、反向双开口方环与闭合方环相互耦合来组成,在太赫兹范围内具有多波段电磁诱导透明(EIT)效应。该结构分别实现了在1.21、1.46、1.61、1.98 THz这四波段的电磁诱导透明现象,并且谐振强度均达到0.9左右。通过将结构单元进行拆分并相互对比分析,研究了该超材料结构产生多波段EIT效应的物理机理,并重点分析了开口大小、闭合方环尺寸对EIT强度与带宽的影响。通过对三维立体结构仿真分析可知,所设计的超材料不仅在多个波段获得了较高的折射率灵敏度,还具有高强度、多频点的慢光效应。因此,其在折射率传感与光缓存器件等领域,具有良好的应用前景。  相似文献   

19.

A compact rectangular microstrip-fed Ultra Wideband patch antenna with double band notched feature at Wi-Max and WLAN is offered in this paper. The designed antenna is composed of an ordinary rectangular patch antenna with a partially defective ground structure. For achieving dual notch characteristics a ‘U’ and ‘Reversed U’ slots are embedded in the radiating patch. The partial ground plane structure with U shaped slot in the middle is incorporated for achieving additional resonance and bandwidth enhancement. The proposed antenna has a measurement of 20 × 33 × 1.6 mm3. First notch created by U shaped slot at frequency 3.5 GHz is for Wi-Max (from 2.9 to 4.5 GHz) and Second notch which is generated by Reversed U shaped slots at frequency 5.4 GHz is for WLAN (from 5.49 to 6.45 GHz). The antenna covers almost complete range of Ultra Wideband (3.1–10.6 GHz). The Simulation analysis of the proposed antenna is carried out using CST-2011 simulation software. The radiation pattern of the simulated antenna is near Omnidirectional and the Gain of proposed antenna is almost stable over the range of UWB excluding notch bands.

  相似文献   

20.
The design of a multifrequency dipole antenna array based on a resonant meta-surface superstrate is proposed. The behavior of a single element that is closely placed to a meta-surface is experimentally investigated. The proposed meta-surface is based on resonating unit cells formed by capacitively loaded strips and split ring resonators. By tuning a dipole antenna to the pass band of the meta-surface, the physical area is effectively illuminated enhancing the radiation performance. The gain, radiation efficiency and effective area values of the whole configuration are compared to the ones obtained with a single dipole without superstrate. Radiation efficiency values for the proposed configuration of more than 80% and gain values of more than 4.5 plusmn 1 dB are obtained. Based on this configuration, simulated results of a multifrequency antenna array are presented. Distinctive features of this configuration are high isolation between elements (20 dB for a distance of lambda0/4), and low back radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号