首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
摩托车磁流变阻尼器的设计研究   总被引:1,自引:0,他引:1  
磁流变液(Magnetorheological fuild)是一种新型的智能材料,属于可控流体,具有在外加磁场作用下快速可逆地改变流变性能的特点。该文选择剪切阀式作为本文阻尼器的工作模式,推导基于平行结构的Bingham模型阻尼器阻尼力的计算表达式。优化设计了磁流变阻尼器的结构参数,在此基础上,根据理论分析选择阻尼器的结构尺寸,设计制作了单出杆磁流变阻尼器。对该文设计的磁流变阻尼器的特性进行了实验研究,该文的研究结果对于磁流变阻尼器在摩托车悬挂系统中的应用具有较好的参考价值。  相似文献   

2.
磁流变液阻尼器的磁路设计方法   总被引:3,自引:0,他引:3  
磁流变阻尼器因其优越的性能,在汽车制造业、建筑业都具有潜在的巨大商业应用价值。在对磁流变阻尼器的磁路设计进行理论分析的基础上,建立一套比较完善且有效的磁流变阻尼器的磁路设计方法。本文所涉及的磁流变液阻尼器主要应用于车辆悬架的半主动振动控制。  相似文献   

3.
磁流变液阻尼器具有阻尼可控、能耗低、对外界激励响应快等特点,因此基于磁流变液阻尼器的下假肢成为目前假肢应用领域的研究热点。现有磁流变液阻尼器体积较大且笨重,而且初始阻尼力较大,用于下假肢膝关节时无法对人体步态进行良好地模拟,从而降低了人体运动过程中的步态质量和患者的舒适程度。因此,提出一种应用在下假肢膝关节的孔隙结合式磁流变液阻尼器,孔隙结合式磁流变液阻尼器响应快、模拟出的步态拟人性强、结构轻巧、易更换、使用寿命长且价格低廉,可满足截肢患者对假肢的性能及外观要求。  相似文献   

4.
针对剪切阀式磁流变液阻尼器运动过程中存在活塞杆晃动、活塞行程受导向环影响而减小等问题,设计了一种新型阀式磁流变液阻尼器,推导了其阻尼力模型.利用ANSYS软件对设计的阻尼器活塞进行磁路仿真,从而选取合适材料,并通过测试其阻尼特性,结合推导的阻尼力模型,分析了阻尼力的影响因素.结果发现:所设计的阻尼器属于外径大、行程小的阻尼器,其活塞运动速度对阻尼力具有较大影响.  相似文献   

5.
磁流变液阻尼器的力学性能直接决定了其应用范围。目前的磁流变液阻尼器主要集中于大阻尼力的减振,而对于阻尼力范围较小的应用较少。对此,根据多孔泡沫金属材料的特性,论文设计了一种多孔泡沫金属磁流变液阻尼器,分析了其工作原理,并利用搭建的性能测试系统对其力学性能影响因素进行了研究。结果表明:该多孔泡沫金属阻尼器可用于小阻尼力方面的减振,而且其他条件相同时,采用泡沫金属铜产生的阻尼力比采用泡沫金属镍的阻尼力大,为磁流变技术的推广应用提供了新思路。  相似文献   

6.
为了研究新型可控流体磁流变液的特性以及利用以磁流变液为流体的阻尼器的阻尼特性,本文对磁流变液的重要组成部分——磁性微颗粒进行了介绍.并讨论了描述磁流变液的流变模型。在分析现有磁流变阻尼器结构的基础上.提出了一种改进的阻尼器结构。最后对改进结构测试了其性能,分析了影响其性能的各种因素,并提出了目前尚待解决的主要问题。  相似文献   

7.
为减小磁流变液阻尼器(MRD)零磁场时的角动量损耗,设计了一种基于超声场作用的磁流变液阻尼器。该阻尼器内置盘型超声振子辐射超声场,可以减小阻尼器零场阻尼力矩。采用有限元法进行了超声振子动力学分析和阻尼器磁路仿真,并通过实验验证了超声振子的输出性能。基于Bingham模型得到了阻尼器的力矩模型。在高速地面负载实验台上进行了阻尼器输出性能测试和超声场调节零场阻尼实验,结果证明超声场可明显减小该阻尼器零场阻尼。  相似文献   

8.
磁流变阻尼器的研究及应用现状   总被引:2,自引:0,他引:2  
简要介绍磁流变效应的机理及磁流变液的特性,阐述磁流变器件的工作原理,归纳目前磁流变技术在国内外的研究状况及工程中的应用,提出磁流变阻尼技术发展道路上亟待解决的问题。  相似文献   

9.
磁流变阻尼器在斜拉索减振中的应用   总被引:3,自引:0,他引:3  
大跨度斜拉桥拉索的大幅振动及其控制越来越引起人们的重视,应用磁流变阻尼器进行拉索减振是一种新的探索。文中介绍在洞庭湖大桥应用磁流变阻尼器进行拉索减振的试验研究情况,得到了安装阻尼器前后拉索的动力特性,结果显示拉索系统的模态频率在安装阻尼器后增大了3%-4%,模态阻尼比无阻尼器时增大了3倍-6倍。磁流变阻尼器的减振效果经历了实际风雨振的检验,在其他拉索发生大幅振动的情况下,装有磁流变阻尼器的拉索稳定如常,其振幅减小20倍-30倍。证明该阻尼器是拉索减振的有效手段。这些对于应用磁流变阻尼器进行拉索振动控制具有一定的指导意义。  相似文献   

10.
以舰船设备减振降噪研究为背景,分析了新型减振材料基本情况和国内外技术现状,简要阐述了磁流变液的组成及磁流变效应的机理,对近年来磁流变液减振技术在机械工程、军事领域等方面的应用进行了分类综述,并对其应用前景进行了展望。  相似文献   

11.
轴向绕组磁流变液阻尼器的磁场特性分析   总被引:1,自引:0,他引:1  
运用ANSYS有限元分析软件,针对轴向绕组结构的磁流变液阻尼器,建立电磁场有限元计算模型,分析阻尼间隙通道的磁场特性,并建立径向线圈磁路结构的电磁场有限元模型,分析径向结构的阻尼间隙通道的磁场分布特性,对比有限元理论分析得出轴向绕组结构能在阻尼间隙通道产生近似平行平板磁场特性的均匀磁场.然后对轴向绕组结构在阻尼间隙通道产生的磁场进行测试,试验得出轴向绕组结构的阻尼器间隙通道磁场特性优良,更有利于磁流变效应;试验结果与理论分析基本一致,有限元分析方法为轴向绕组阻尼器的理论研究提供了方法参考.  相似文献   

12.
通过对汽车磁流变减振器的工作模式的分析,利用ANSYS电磁场模块和流体动力学模块,建立减振器磁路有限元模型。采用序惯耦合法,计算得出阻尼力-速度关系曲线,完成了汽车磁流变减振器结构优化设计及磁路分析。将所设计的磁流变减振器在MTS849减振器试验台上进行试验,测得磁流变减振器的示功图和速度特性,利用试验数据,进行多项式拟合,精确的建立了该减振器的阻尼力模型,与理论计算曲线比较,说明多项式模型能较好的描述减振器非线性特性和滞回特性。  相似文献   

13.
汽车悬架的磁流变减振器阻尼力调节特性的研究   总被引:1,自引:1,他引:1  
以磁流变阻尼控制方法为向导,研究汽车悬架系统中的磁流变减振器阻尼力的调节原理,以高斯白噪声的路面为输入,分析汽车被动与半主动悬架系统中的磁流变减振器的黏性阻尼力和库仑阻尼力的调节特性,讨论半主动悬架系统的磁流变减振器的最优控制方法,通过计算机仿真,获取半主动悬架系统最优控制的磁流变阻尼力的控制电流随路面激励而变化的关系.  相似文献   

14.
提出了冲击载荷下磁流变阻尼器的设计方法和约束条件,并使用MATLAB优化结构参数.针对某型号火炮,实际设计了一阻尼器,从结构和磁场方面进行了验证.结果表明:所设计的阻尼器满足约束条件,活塞间隙内的磁流变液被充分激励,且磁场分布均匀,铁芯工作在高磁导率范围内.火炮后坐过程仿真结果表明阻尼器能够有效减小最大后坐阻力峰值.  相似文献   

15.
徐兴文  郑堤  胡利永  詹建明 《机电工程》2013,(10):1188-1191
针对旋转式磁流变液阻尼的磁滞性问题以及由于磁滞性而造成的旋转式磁流变液阻尼器输出力矩不稳定的问题,设计了一种差动式阻尼器,不仅可以使输出的力矩可控性更好,而且有效地克服了磁滞现象的影响.在通过理论计算得到磁流变液差动阻尼器输出力矩模型的基础上,利用ANSYS有限元分析软件对磁流变液差动阻尼器进行了磁场分析,得到了磁流变液的磁感强度与磁流变液差动阻尼器线圈中的控制电流之间的关系,结合数值分析软件得到了磁流变液差动阻尼器的输出力矩与线圈中的控制电流之间的关系.研究结果表明,通过控制磁流变液差动阻尼器的控制电流可以实时调整差动阻尼器的输出力矩大小及方向,对磁流变液阻尼器作为精确控制的力矩控制元件奠定了理论基础.  相似文献   

16.
在分析磁流变阻尼器阻尼力计算模型的基础上,对电控特性方程进行了分析讨论,通过研究控制系统的激励源、数据采集系统、电流控制器等主要模块,设计了一种基于MTS810材料试验机的磁流变阻尼器控制系统的试验方法,试验结果符合理论计算模型。该方法对于磁流变阻尼器的半主动控制、力学性能测试及结构改进研究十分有效。  相似文献   

17.
In this study, an experimental and a theoretical study were carried out to predict the dynamic performance of a linear magnetorheological (MR) fluid damper. After having designed and fabricated the MR damper, its dynamic testing was performed on a mechanical type shock machine under sinusoidal excitation. A theoretical flow analysis was done based on the Bingham plastic constitutive model to predict the behavior of the prototyped MR damper. The theoretical results were then validated by comparing them against experimental data, and it was shown that the flow model can accurately capture the dynamic force range of the MR damper. In addition to the flow model, a modified parametric algebraic model was proposed to capture the hysteretic behavior of the MR damper. The superiority of the proposed modified model was shown by comparing it with the Alg model as well as with a widely adopted modified Bouc-Wen model through an error analysis. It is observed that although all the three models are comparable at the excitation velocities of 0.05, 0.10, and 0.15 m/s, the mAlg model is remarkably successful at the highest excitation velocity of 0.2 m/s over the other two. The improvements in the predictions were found to be over 50%, relative to unmodified model especially at lower current inputs. Therefore, it was concluded that the present flow model can be successfully adopted to design and predict the dynamic behavior of MR dampers, while the mAlg model can be used to develop more effective control algorithms for such devices.  相似文献   

18.
以火炮反后坐系统为对象,研究冲击载荷下磁流变阻尼器(Magneto-rheological Damper,MRD)的结构设计与优化.以冲击缓冲控制过程中需要的最大阻尼力为基本设计目标,设计了MRD的基本结构,进行磁路分析,得到了满足基本设计要求的阻尼器.在此基础上以最大可调系数和最小结构体积为优化目标,提出相应的设计变量和约束条件,用MATLAB实现结构的优化设计,并用ANSYS进行了具有磁场约束的结构优化.优化设计的结果表明,两种优化设计均能提高可调系数和减小结构体积,但MATLAB优化后的磁路性能并不十分理想,而ANSYS优化结果具有较好的综合性能.  相似文献   

19.
A magneto-rheological (MR) fluid damper is a semi-active control device that has recently begun to receive more attention in the vibration control community. However, the inherent nonlinear nature of the MR fluid damper makes it challenging to use this device to achieve high damping control system performance. The development of an accurate modeling method for a MR fluid damper is necessary because of its unique characteristics. Our goal was to develop an alternative method for modeling an MR fluid damper by using a self tuning fuzzy (STF) method based on neural technique. The behavior of the researched damper is directly estimated through a fuzzy mapping system. To improve the accuracy of the STF model, a back propagation and a gradient descent method are used to train online the fuzzy parameters to minimize the model error function. A series of simulations were done to validate the effectiveness of the suggested modeling method when compared with the data measured from experiments on a test rig with a researched MR fluid damper. Finally, modeling results show that the proposed STF interference system trained online by using neural technique could describe well the behavior of the MR fluid damper without need of calculation time for generating the model parameters. This paper was recommended for publication in revised form by Associate Editor Hong Hee Yoo Kyoung Kwan Ahn received the B.S. degree in the Department of Mechanical Engineering from Seoul National University in 1990, the M. Sc. degree in Mechanical Engineering from Korea Advanced Institute of Science and Technology (KAIST) in 1992 and the Ph.D. degree from Tokyo Institute of Technology in 1999, respectively. He is currently a Professor in the School of Mechanical and Automotive Engineering, University of Ulsan, Ulsan, Korea. His research interests are design and control of smart actuator using smart material, fluid power control and active damping control. He is a Member of IEEE, ASME, SICE, RSJ, JSME, KSME, KSPE, KSAE, KFPS, and JFPS. Dinh Quang Truong received the B.S degree from the department of Mechanical Engineering from Hochiminh City University of Technology in 2001. From 2003 to 2006, he worked in the lab of machine design — Mechanical Department of Hochiminh City University of Technology. He is currently Ph.D. candidate at University of Ulsan. His research interests focus on designing and control of new hydraulic actuators, applications to hybrid vehicles with saving energy.  相似文献   

20.
为解决大型阻尼器工作中传统密封方式磨损老化维护困难问题,针对磁流变阻尼器的工作特点,在磁流变阻尼器中充分利用新型智能材料磁流变液的优异特性,建立一种新型的非接触式磁密封机制。探讨非接触式磁密封机制的工作原理和具体结构,使用有限元仿真软件对阻尼器工作部位磁场进行仿真分析,建立磁密封理论耐压能力的理论计算模型。表明此种非接触式磁密封较传统密封方法具有高可靠性,超长维修间隔时间,摩擦小,效率高,无方向性的优势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号