首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 804 毫秒
1.
This paper presents two types of nonlinear controllers for an autonomous quadrotor helicopter. One type, a feedback linearization controller involves high-order derivative terms and turns out to be quite sensitive to sensor noise as well as modeling uncertainty. The second type involves a new approach to an adaptive sliding mode controller using input augmentation in order to account for the underactuated property of the helicopter, sensor noise, and uncertainty without using control inputs of large magnitude. The sliding mode controller performs very well under noisy conditions, and adaptation can effectively estimate uncertainty such as ground effects. Recommended by Editorial Board member Hyo-Choong Bang under the direction of Editor Hyun Seok Yang. This work was supported by the Korea Research Foundation Grant (MOEHRD) KRF-2005-204-D00002, the Korea Science and Engineering Foundation(KOSEF) grant funded by the Korea government(MOST) R0A-2007-000-10017-0 and Engineering Research Institute at Seoul National University. Daewon Lee received the B.S. degree in Mechanical and Aerospace Engineering from Seoul National University (SNU), Seoul, Korea, in 2005, where he is currently working toward a Ph.D. degree in Mechanical and Aerospace Engineering. He has been a member of the UAV research team at SNU since 2005. His research interests include applications of nonlinear control and vision-based control of UAV. H. Jin Kim received the B.S. degree from Korea Advanced Institute of Technology (KAIST) in 1995, and the M.S. and Ph.D. degrees in Mechanical Engineering from University of California, Berkeley in 1999 and 2001, respectively. From 2002–2004, she was a Postdoctoral Researcher and Lecturer in Electrical Engineering and Computer Science (EECS), University of California, Berkeley (UC Berkeley). From 2004–2009, she was an Assistant Professor in the School of in Mechanical and Aerospace Engineering at Seoul National University (SNU), Seoul, Korea, where she is currently an Associate Professor. Her research interests include applications of nonlinear control theory and artificial intelligence for robotics, motion planning algorithms. Shankar Sastry received the B.Tech. degree from the Indian Institute of Technology, Bombay, in 1977, and the M.S. degree in EECS, the M.A. degree in mathematics, and the Ph.D. degree in EECS from UC Berkeley, in 1979, 1980, and 1981, respectively. He is currently Dean of the College of Engineering at UC Berkeley. He was formerly the Director of the Center for Information Technology Research in the Interest of Society (CITRIS). He served as Chair of the EECS Department from January, 2001 through June 2004. In 2000, he served as Director of the Information Technology Office at DARPA. From 1996 to 1999, he was the Director of the Electronics Research Laboratory at Berkeley (an organized research unit on the Berkeley campus conducting research in computer sciences and all aspects of electrical engineering). He is the NEC Distinguished Professor of Electrical Engineering and Computer Sciences and holds faculty appointments in the Departments of Bioengineering, EECS and Mechanical Engineering. Prior to joining the EECS faculty in 1983 he was a Professor with the Massachusetts Institute of Technology (MIT), Cambridge. He is a member of the National Academy of Engineering and Fellow of the IEEE.  相似文献   

2.
In this paper, we propose a new topology called theDual Torus Network (DTN) which is constructed by adding interleaved edges to a torus. The DTN has many advantages over meshes and tori such as better extendibility, smaller diameter, higher bisection width, and robust link connectivity. The most important property of the DTN is that it can be partitioned into sub-tori of different sizes. This is not possible for mesh and torus-based systems. The DTN is investigated with respect to allocation, embedding, and fault-tolerant embedding. It is shown that the sub-torus allocation problem in the DTN reduces to the sub-mesh allocation problem in the torus. With respect to embedding, it is shown that a topology that can be embedded into a mesh with dilation δ can also be embedded into the DTN with less dilation. In fault-tolerant embedding, a fault-tolerant embedding method based on rotation, column insertion, and column skip is proposed. This method can embed any rectangular grid into its optimal square DTN when the number of faulty nodes is fewer than the number of unused nodes. In conclusion, the DTN is a scalable topology well-suited for massively parallel computation. Sang-Ho Chae, M.S.: He received the B.S. in the Computer Science and Engineering from the Pohang University of Science and Technology (POSTECH) in 1994, and the M.E. in 1996. Since 1996, he works as an Associate Research Engineer in the Central R&D Center of the SK Telecom Co. Ltd. He took part in developing SK Telecom Short Message Server whose subscribers are now over 3.5 million and Advanced Paging System in which he designed and implemented high availability concepts. His research interests are the Fault Tolerance, Parallel Processing, and Parallel Topolgies. Jong Kim, Ph.D.: He received the B.S. degree in Electronic Engineering from Hanyang University, Seoul, Korea, in 1981, the M.S. degree in Computer Science from the Korea Advanced Institute of Science and Technology, Seoul, Korea, in 1983, and the Ph.D. degree in Computer Engineering from Pennsylvania State University, U.S.A., in 1991. He is currently an Associate Professor in the Department of Computer Science and Engineering, Pohang University of Science and Technology, Pohang, Korea. Prior to this appointment, he was a research fellow in the Real-Time Computing Laboratory of the Department of Electrical Engineering and Computer Science at the University of Michigan from 1991 to 1992. From 1983 to 1986, he was a System Engineer in the Korea Securities Computer Corporation, Seoul, Korea. His major areas of interest are Fault-Tolerant Computing, Performance Evaluation, and Parallel and Distributed Computing. Sung Je Hong, Ph.D.: He received the B.S. degree in Electronics Engineering from Seoul National University, Korea, in 1973, the M.S. degree in Computer Science from Iowa State University, Ames, U.S.A., in 1979, and the Ph.D. degree in Computer Science from the University of Illinois, Urbana, U.S.A., in 1983. He is currently a Professor in the Department of Computer Science and Engineering, Pohang University of Science and Technology, Pohang, Korea. From 1983 to 1989, he was a staff member of Corporate Research and Development, General Electric Company, Schenectady, NY, U.S.A. From 1975 to 1976, he was with Oriental Computer Engineering, Korea, as a Logic Design Engineer. His current research interest includes VLSI Design, CAD Algorithms, Testing, and Parallel Processing. Sunggu Lee, Ph.D.: He received the B.S.E.E. degree with highest distinction from the University of Kansas, Lawrence, in 1985 and the M.S.E. and Ph.D. degrees from the University of Michigan, Ann Arbor, in 1987 and 1990, respectively. He is currently an Associate Professor in the Department of Electronic and Electrical Engineering at the Pohang University of Science and Technology (POSTECH), Pohang, Korea. Prior to this appointment, he was an Associate Professor in the Department of Electrical Engineering at the University of Delaware in Newark, Delaware, U.S.A. From June 1997 to July 1998, he spent one year as a Visiting Scientist at the IBM T. J. Watson Research Center. His research interests are in Parallel, Distributed, and Fault-Tolerant Computing. Currently, his main research focus is on the high-level and low-level aspects of Inter-Processor Communications for Parallel Computers.  相似文献   

3.
In this paper an evolutionary classifier fusion method inspired by biological evolution is presented to optimize the performance of a face recognition system. Initially, different illumination environments are modeled as multiple contexts using unsupervised learning and then the optimized classifier ensemble is searched for each context using a Genetic Algorithm (GA). For each context, multiple optimized classifiers are searched; each of which are referred to as a context based classifier. An evolutionary framework comprised of a combination of these classifiers is then applied to optimize face recognition as a whole. Evolutionary classifier fusion is compared with the simple adaptive system. Experiments are carried out using the Inha database and FERET database. Experimental results show that the proposed evolutionary classifier fusion method gives superior performance over other methods without using evolutionary fusion. Recommended by Guest Editor Daniel Howard. This work was supported by INHA UNIVERSITY Research Grant. Zhan Yu received the B.E. degree in Software Engineering from Xiamen University, China, in 2008. He is currently a master student in Intelligent Technology Lab, Computer and Information Department, Inha University, Korea. He has research interests in image processing, pattern recognition, computer vision, machine learning and statistical inference and computating. Mi Young Nam received the B.Sc. and M.Sc. degrees in Computer Science from the University of Silla Busan, Korea in 1995 and 2001 respectively and the Ph.D. degree in Computer Science & Engineering from the University of Inha, Korea in 2006. Currently, She is Post-Doctor course in Intelligent Technology Laboratory, Inha University, Korea. She’s research interest includes biometrics, pattern recognition, computer vision, image processing. Suman Sedai received the M.S. degree in Software Engineering from Inha University, China, in 2008. He is currently a Doctoral course in Western Australia University, Australia. He has research interests in image processing, pattern recognition, computer vision, machine learning. Phill Kyu Rhee received the B.S. degree in Electrical Engineering from the Seoul University, Seoul, Korea, the M.S. degree in Computer Science from the East Texas State University, Commerce, TX, and the Ph.D. degree in Computer Science from the University of Louisiana, Lafayette, LA, in 1982, 1986, and 1990 respectively. During 1982–1985 he was working in the System Engineering Research Institute, Seoul, Korea as a research scientist. In 1991 he joined the Electronic and Telecommunication Research Institute, Seoul, Korea, as a Senior Research Staff. Since 1992, he has been an Associate Professor in the Department of Computer Science and Engineering of the Inha University, Incheon, Korea and since 2001, he is a Professor in the same department and university. His current research interests are pattern recognition, machine intelligence, and parallel computer architecture. dr. rhee is a Member of the IEEE Computer Society and KISS (Korea Information Science Society).  相似文献   

4.
In micro-manipulations, force sensing devices play an important role in the control and the assembly of micro-objects. To protect these micro-objects from damage, we must have the ability to detect the value of the minute amount of interactive force (about a few μN) upon contact between the tip and the object. To detect this micro-force, we need an optimized design of force sensor to increase the strain values at the positions we place sensing components. Stress concentration can effectively amplify the strain values measured by the force sensors. This paper investigates the effect that the notches have on increasing the strain values at the positions we attach the sensing elements. In addition, the optimal design with a flexible structure improves the sensitivity of the sensor. An algorithm that can calculate both contact force and contact position on the sensor tip is also mentioned. Besides, an optimal location of strain gauges will ensure the accuracy and stability of the measurement. Finally, analysis and experiment are done to verify the proposed idea. Recommended by Editorial Board member Dong Hwan Kim under the direction of Editor Jae-Bok Song. This research was supported by the Ministry of Knowledge Economy and Korean Industrial Technology Foundation through the Human Resource Training Project for Strategic Technology. Tri Cong Phung received the B.S. degree in Mechanical Engineering from the HCM University of Technology, Vietnam in 2004 and the M.S. degree in Mechanical Engineering from Sungkyunkwan University in 2007. He is currently working toward a Ph.D. degree in Intelligent Robotics and Mechatronic System Laboratory (IRMS Lab), Mechanical Engineering from Sungkyunkwan University. His research interests include dexterous manipulation and touch sensors. Seung Hwa Ha received the B.S. degree in Korean University of Technology and Education, Korea in 2004. He received the M.S. degree in Mechanical Engineering from Sungkyunkwan University in 2008. He is currently working in Samsung Electronic Co. Ltd. His research interests are about strain gauge and high precision control. Yong Seok Ihn received the B.S. degree in School of Mechanical Engineering from the Sungkyunkwan University, Korea in 2006. He received the M.S. degree in Mechanical Engineering from the Sungkyunkwan University, in 2008. He is currently working toward a Ph. D. degree in the Computer Aided Modeling & Simulation Laboratory (CAMAS Lab), School of Mechanical Engineering at the Sungkyunkwan University in Korea. His research interests are precision mechatronics, dynamic system modeling, and control. Byung June Choi received the B.S. degree in School of Mechanical Engineering from the Sungkyunkwan University, Korea in 2002. He received the M.S. degree in Mechanical Engineer-ing from the Sungkyunkwan University, in 2005. He is currently working toward a Ph.D. degree in the Intelligent Robotics and Mechatronic System Laboratory (IRMS Lab), School of Mechanical Engineering at the Sungkyunkwan University in Korea. His research interests are mechanisms design, multi-robot system control, cooperation, path planning and task allocation algorithm. Sang Moo Lee was born in Seoul, Korea and educated in Seoul. He received the Ph.D. degree from the Seoul National University in Korea, in 1999. He is currently a Principal Researcher of Division for Applied Robot Technology at Korean Institute of Industrial Technology. His research interests include high-precision robot control, motion field network, and location system in outdoor environment for robots. Ja Choon Koo is an Associate Professor of School of Mechanical Engineering in Sungkyunkwan University in Korea. His major researches are in the field of design, analysis, and control of dynamics systems, especially micro precision mechatronic systems and energy transducers. He was an Advisory Engineer for IBM, San Jose, California, USA and a Staff Engineer for SISA, San Jose, CA, USA. He received the Ph.D. and M.S. degrees from the University of Texas at Austin and the B.S. from Hanyang University, Seoul, Korea. Hyouk Ryeol Choi received the B.S. degree from Seoul National University, Seoul, Korea, in 1984, the M.S. degree from Korea Advanced Institute of Science and Technology (KAIST), Daejon, Korea, in 1986, and the Ph.D. degree from Pohang University of Science and Technology (POSTECH), Pohang, Korea, in 1994, all in Mechanical Engineering. From 1986 to 1989, he was an Associate Engineer at LG Electronics Central Research Laboratory, Seoul. From 1993 to 1995, he was at Kyoto University, Kyoto, Japan, as a Grantee of scholarship from the Japanese Educational Ministry. From 2000 to 2001, he visited Advanced Institute of Industrial Science Technology (AIST), Tsukuba, Japan, as a Japan Society for the Promotion of Sciences (JSPS) Fellow. Since 1995, he has been with Sungkyunkwan University, Suwon, Korea, where he is currently a Professor in the School of Mechanical Engineering. He is an Associate Editor of the Journal of Intelligent Service Robotics and International Journal of Control, Automation and Systems (IJCAS), and IEEE Transactions on Robotics. His current research interests include dexterous mechanism, field application of robots, and artificial muscle actuators.  相似文献   

5.
Due to recent rapid deployment of Internet Appliances and PostPC products, the importance of developing lightweight embedded operating system is being emphasized more. In this article, we like to present the details of design and implementation experience of low cost embedded system, Zikimi, for multimedia data processing. We use the skeleton of existing Linux operating system and develop a micro-kernel to perform a number of specific tasks efficiently and effectively. Internet Appliances and PostPC products usually have very limited amount of hardware resources to execute very specific tasks. We carefully analyze the system requirement of multimedia processing device. Weremove the unnecessary features, e.g. virtual memory, multitasking, a number of different file systems, and etc. The salient features of Zikimi micro kernel are (i) linear memory system and (ii) user level control of I/O device. The result of performance experiment shows that LMS (linear memory system) of Zikimi micro kernel achieves significant performance improvement on memory allocationagainst legacy virtual memory management system of Linux. By exploiting the computational capability of graphics processor and its local memory, we achieve 2.5 times increase in video processing speed. Supported by KOSEF through Statistical Research Center for Complex Systems at Seoul National University. Funded by Faculty Research Institute Program 2001, Sahmyook University, Korea. Sang-Yeob Lee received his B.S. and M.S degree from Hanyang University, seoul, Korea in 1995. He is currently working towards the Ph.D. degree in Devision of Electrical and Computer Engineering, Hanyang University, Seoul, Korea. Since 1998, he has been on the faculty of Information Management System at Sahmyook university, Seoul, Korea. His research interests include robot vision systems, pattern recognition, Multimedia systems. He is a member of IEEE. Youjip Won received the B.S and M.S degree in Computer Science from the Department of Computer Science, Seoul National University, Seoul, Korea in 1990 and 1992, respectively and the Ph.D. in Computer Science from the University of Minnesota, Minneapolis in 1997. After finishing his Ph.D., He worked as Server Performance Analysts at Server Architecture Lab., Intel Corp. Since 1999, he has been on the board of faculty members in Division of Electrical and Computer Engineering, Hanyang University, Seoul, Korea. His current research interests include Multimedia Systems, Internet Technology, Database and Performance Modeling and Analysis. He is a member of ACM and IEEE. Whoi-Yul Kim received his B.S. degree in Electronic Engineering from Hanyang University, Seoul, Korea in 1980. He received his M.S. from Pennsylvania State University, University Park, in 1983 and his Ph.D. from Purdue University, West Lafayette, in 1989, both in Electrical Engineering. From 1989 to 1994, he was with the Erick Jonsson School of Engineering and Computer Science at the University of Texas at Dallas. Since 1994, he has been on the faculty of Electronic Engineering at Hanyang University, Seoul, Korea. He has been involved with research development of various range sensors and their use in robot vision systems. Recently, his work has focused on content-based image retrieval system. He is a member of IEEE.  相似文献   

6.
In this paper, it is presented a novel approach for the self-sustained resonant accelerometer design, which takes advantages of an automatic gain control in achieving stabilized oscillation dynamics. Through the proposed system modeling and loop transformation, the feedback controller is designed to maintain uniform oscillation amplitude under dynamic input accelerations. The fabrication process for the mechanical structure is illustrated in brief. Computer simulation and experimental results show the feasibility of the proposed accelerometer design, which is applicable to a control grade inertial sense system. Recommended by Editorial Board member Dong Hwan Kim under the direction of Editor Hyun Seok Yang. This work was supported by the BK21 Project ST·IT Fusion Engineering program in Konkuk University, 2008. This work was supported by the Korea Foundation for International Cooperation of Science & Technology(KICOS) through a grant provided by the Korean Ministry of Education, Science & Technology(MEST) in 2008 (No. K20601000001). Authors also thank to Dr. B.-L. Lee for the help in structure manufacturing. Sangkyung Sung is an Assistant Professor of the Department of Aerospace Engineering at Konkuk University, Korea. He received the M.S and Ph.D. degrees in Electrical Engineering from Seoul National University in 1998 and 2003, respectively. His research interests include inertial sensors, avionic system hardware, navigation filter, and intelligent vehicle systems. Chang-Joo Kim is an Assistant Professor of the Department of Aerospace Engineering at Konkuk University, Korea. He received the Ph.D. degree in Aeronautical Engineering from Seoul National University in 1991. His research interests include nonlinear optimal control, helicopter flight mechanics, and helicopter system design. Young Jae Lee is a Professor of the Department of Aerospace Engineering at Konkuk University, Korea. He received the Ph.D. degree in Aerospace Engineering from the University of Texas at Austin in 1990. His research interests include integrity monitoring of GNSS signal, GBAS, RTK, attitude determination, orbit determination, and GNSS related engineering problems. Jungkeun Park is an Assistant Professor of the Department of Aerospace Engineering at Konkuk University. Dr. Park received the Ph.D. in Electrical Engineering and Computer Science from the Seoul National University in 2004. His current research interests include embedded real-time systems design, real-time operating systems, distributed embedded real-time systems and multimedia systems. Joon Goo Park is an Assistant Professor of the Department of Electronic Engineering at Gyung Book National University, Korea. He received the Ph.D. degree in School of Electrical Engineering from Seoul National University in 2001. His research interests include mobile navigation and adaptive control.  相似文献   

7.
Microarchitects should consider power consumption, together with accuracy, when designing a branch predictor, especially in embedded processors. This paper proposes a power-aware branch predictor, which is based on the gshare predictor, by accessing the BTB (Branch Target Buffer) selectively. To enable the selective access to the BTB, the PHT (Pattern History Table) in the proposed branch predictor is accessed one cycle earlier than the traditional PHT if the program is executed sequentially without branch instructions. As a side effect, two predictions from the PHT are obtained through one access to the PHT, resulting in more power savings. In the proposed branch predictor, if the previous instruction was not a branch and the prediction from the PHT is untaken, the BTB is not accessed to reduce power consumption. If the previous instruction was a branch, the BTB is always accessed, regardless of the prediction from the PHT, to prevent the additional delay/accuracy decrease. The proposed branch predictor reduces the power consumption with little hardware overhead, not incurring additional delay and never harming prediction accuracy. The simulation results show that the proposed branch predictor reduces the power consumption by 29-47%.  相似文献   

8.
This paper presents a decentralized adaptive backstepping controller to dampen oscillations and improve the transient stability to parametric uncertainties in multimachine power systems. The proposed design on the i th synchronous generator uses only local information and operates without the need for remote signals from the other generators. The design of the nonlinear controller is based on a modified fourth-order nonlinear model of a synchronous generator, and the automatic voltage regulator model is considered so as to decrease the steady state voltage error. The construction of both the control law and the associated Lyapunov function is systematically designed within the design methodology. A 3-machine power system is used to demonstrate the effectiveness of the proposed controller over two other controllers, namely a conventional damping controller (power system stabilizer) and one designed using the feedback linearization techniques. Recommended by Editorial Board member Gang Tao under the direction of Editor Jae Weon Choi. This work was supported by the Korea Electrical Engineering and Science Research Institute, which is funded by Ministry of Commerce, Industry and Energy. Shan-Ying Li received the B.S. degrees in Computer Science and M.S. degree in Electrical Engineering from Northeast DianLi University, China, in 1997 and 2002, respectively. She obtained the Ph.D. degree in Electrical Engineering from Seoul National University, Korea, in 2008. She is a Post Doctor in North China Electric Power Research Institute, North China Grid Co., Ltd., China. Her research interests are in the areas of advanced control and stability applications on power systems. Sang-Seung Lee received the M.S.E.E. and Ph.D. degrees in Electrical Engineering at Seoul National University. Currently, he is with Power System Research Division of KESRI, Seoul National University, Korea. His interest areas are nonlinear/adaptive control theory, North-East Asia power system interconnection, distributed/small generation, distributed transmission/distribution load flow algorithm, regional/local energy system, PSS (power system stabilizer), and RCM (Reliability Centered Maintenance). Yong Tae Yoon was born in Korea on April 20, 1971. He received the B.S. degree, M.Eng. and Ph.D. degrees from M.I.T., USA in 1995, 1997, and 2001, respectively. Currently, he is an Assistant Professor in the School of Electrical Engineering and Computer Science at Seoul National University, Korea. His special field of interest includes electric power network economics, power system reliability, and the incentive regulation of independent transmission companies. Jong-Keun Park received the B.S. degree in Electrical Engineering from Seoul National University, Seoul, Korea in 1973 and the M.S. and Ph.D. degrees in Electrical Engineering from The University of Tokyo, Japan in 1979 and 1982, respectively. He is currently a Professor of School of Electrical Engineering, Seoul National University. In 1992, he attended as a Visiting Professor at Technology and Policy Program and Laboratory for Electromagnetic and Electronic Systems, Massachusetts Institute of Technology. He is a Senior Member of the IEEE, a Fellow of the IEE, and a Member of Japan Institute of Electrical Engineers (JIEE).  相似文献   

9.
10.
New fusion predictors for linear dynamic systems with different types of observations are proposed. The fusion predictors are formed by summation of the local Kalman filters/predictors with matrix weights depending only on time instants. The relationship between fusion predictors is established. Then, the accuracy and computational efficiency of the fusion predictors are demonstrated on the first-order Markov process and the GMTI model with multisensor environment. Recommended by Editorial Board member Lucy Y. Pao under the direction of Editor Young Il Lee. This work was partially supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MOST), No. R01-2007-000-20227-0 and the Center for Distributed Sensor Network at GIST. Ha-Ryong Song received the B.S. degree in Control and Instrumentation Engineering from the Chosun University, Korea, in 2006, the M.S. degree in School of Information and Mechatronics from the Gwangju Institute of Science and Technology, Korea, in 2007. He is currently a Ph.D. candidate in Gwangju Institute of Science and Technology. His research interests include estimation, target tracking systems, data fusion, nonlinear filtering. Moon-Gu Jeon received the B.S. degree in architectural engineering from the Korea University, Korea in 1988. He then received both the M.S. and Ph.D. degrees in computer science and scientific computation from the University of Minnesota in 1999 and 2001, respectively. Currently, he is an Associate Professor at the School of Information and Mechatronics of the Gwangju Institute of Science and Technology (GIST). His current research interests are in machine learning and pattern recognition and evolutionary computation. Tae-Sun Choi received the B.S. degree in Electrical Engineering from the Seoul National University, Seoul, Korea, in 1976, the M.S. degree in Electrical Engineering from the Korea Advanced Institute of Science and Technology, Seoul, Korea, in 1979, and the Ph.D. degree in Electrical Engineering from the State University of New York at Stony Brook, in 1993. He is currently a Professor in the School of Information and Mechatronics at Gwangju Institute of Science and Technology, Korea. His research interests include image processing, machine/robot vision, and visual communications. Vladimir Shin received the B.Sc. and M.Sc. degrees in Applied Mathematics from Moscow State Aviation Institute, in 1977 and 1979, respectively. In 1985 he received the Ph.D. degree in Mathematics at the Institute of Control Science, Russian Academy of Sciences, Moscow. He is currently an Associate Professor at Gwangju Institute of Science and Technology, South Korea. His research interests include estimation, filtering, tracking, data fusion, stochastic control, identification, and other multidimensional data processing methods.  相似文献   

11.
We employ a static analysis to examine the extensivity (∀x:x≤f(x)) of functions defined over lattices in a λ-calculus augmented with lattice operations. The need for such a verification procedure has arisen in our work on a generator system (called Zoo) of static program-analyzers. The input to Zoo is a static analysis specification that consists of lattice definitions and function definitions over the lattices. Once the extensivity of the functions is ascertained, the generated analyzer is guaranteed to terminate when the lattices have finite-heights. The extensivity analysis consists of a sound syntax-driven deductive rules whose satisfiability check is done by a constraint solving procedure. Hyunjun Eo: He is a Ph.D. candidate of Computer Science Dept. at KAIST (Korea Advanced Institute of Science and Technology). He received his B.S. and M.S. in Computer Science from KAIST in 1996 and 1998, respectively. For 1998–2003, he was a research assistant of the National Creative Research Initiative Center for Research On Program Analysis System. His research interest has been on static program analysis, program logics, and higher-order and typed languages. He is currently working on developing a tool for automatic generation of program analyzers. Kwangkeun Yi, Ph.D.: His research interest has been on semantic-based program analysis and systems application of language technologies. After his Ph.D. from University of Illinois at Urbana-Champaign he joined the Software Principles Research Department at Bell Laboratories, where he worked on various static analysis approaches for higher-order and typed programming languages. For 1995–2003, he was a faculty member in the Department of Computer Science, Korea Advanced Institute of Science and Technology. Since Fall 2003, he has been a faculty member in the School of Computer Science and Engineering, Seoul National University. Kwang-Moo Choe, Ph.D.: He is a professor of Computer Science at Korea Advanced Institute of Science and Technology. He received his B.S. from Seoul National University in 1976, and his M.S. and Ph.D. from Korea Advanced Institute of Science and Technology in 1978 and 1984, respectively. For 1985–1986, he was a technical staff of AT&T Bell Labs at Murray Hill. His research interest is formal language theory, parallel evaluation of logic programs, and optimizing compilers.  相似文献   

12.
This paper presents new object-spatial layout-route based hybrid map representation and global localization approaches using a stereo camera. By representing objects as high-level features in a map, a robot can deal more effectively with different contexts such as dynamic environments, human-robot interaction, and semantic information. However, the use of objects alone for map representation has inherent problems. For example, it is difficult to represent empty spaces for robot navigation, and objects are limited to readily recognizable things. One way to overcome these problems is to develop a hybrid map that includes objects and the spatial layout of a local space. The map developed in this research has a hybrid structure that combines a global topological map and a local hybrid map. The topological map represents the spatial relationships between local spaces. The local hybrid map combines the spatial layout of the local space with the objects found in that space. Based on the proposed map, we suggest a novel coarse-to-fine global localization method that uses object recognition, point cloud fitting and probabilistic scan matching. This approach can accurately estimate robot pose with respect to the correct local space. Recommended by Editor Jae-Bok Song. This research was performed for the Intelligent Robotics Development Program, one of the 21st Century Frontier R&D Programs funded by the Ministry of Knowledge Economy of Korea. Soonyong Park received the B.S. and M.S. degrees from the Department of Mechanical Engineering, Kyunghee University, Seoul, Korea, in 2001 and 2003, respectively. He is currently working toward the Ph.D. degree in the Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea. Since 2001, he has been a student researcher in the Center for Cognitive Robotics Research, Korea Institute of Science and Technology (KIST), Seoul, Korea. His research interests include mobile robot navigation and computer vision. Mignon Park received the B.S. and M.S. degrees in Electronics from Yonsei University, Seoul, Korea, in 1973 and 1977, respectively. He received the Ph.D. degree in University of Tokyo, Japan, 1982. He was a researcher with the Institute of Biomedical Engineering, University of Tokyo, Japan, from 1972 to 1982, as well as at the Massachusetts Institute of Technology, Cambridge, and the University of California Berkeley, in 1982. He was a visiting researcher in Robotics Division, Mechanical Engineering Laboratory, Ministry of International Trade and Industry, Tsukuba, Japan, from 1986 to 1987. He has been a Professor in the Department of Electrical and Electronic Engineering in Yonsei University, since 1982. His research interests include fuzzy control and application, robotics, and fuzzy biomedical system. Sung-Kee Park is a principal research scientist for Korea Institute of Science and Technology (KIST). He received the B.S. and M.S. degrees in Mechanical Design and Production Engineering from Seoul National University, Seoul, Korea, in 1987 and 1989, respectively. He received the Ph.D. degree (2000) from Korea Advanced Institue of Science and Technology (KAIST), Korea, in the area of computer vision. Since then, he has been working for the center for cognitive robotics research at KIST. During his period at KIST, he held a visiting position at the Robotics Institute of Carnegie Mellon University in 2005, where he did research on object recognition. His recent work has been on cognitive visual processing, object recognition, visual navigation, and human-robot interaction.  相似文献   

13.
This paper proposes a method for robust reduced-order H filter design for polytopic uncertain systems, using linear matrix inequalities (LMIs). Sufficient LMI conditions for both robust full- and reduced-order H filter design are derived. Convex optimization problems are formulated and solved to obtain optimal H filters by using the resulting LMI conditions. The resulting conditions do not involve any non-convex rank constraints, and thus the proposed method for H filter design guarantees global optimum solutions. Numerical examples are presented to show the effectiveness of the proposed method. Recommended by Editorial Board member Huanshui Zhang under the direction of Editor Young Il Lee. This work was supported by the Brain Korea 21 Project and the Basic Research Program of the Korea Science and Engineering Foundation under grant R01-2006-000-11373-0. Hyoun-Chul Choi received the B.S., M.S., and Ph.D. degrees in Control and Instrumentation Engineering from Ajou University, Suwon, Korea, in 1995, 1997, and 2006, respectively. He was a Visiting Researcher at Griffith University, Brisbane, Australia, from 2001 to 2002, and a Postdoctoral researcher at Ajou University, Suwon, Korea, from 2006 to 2007. Since 2008, he has been with ASRI, School of Electrical Engineering and Computer Science, Seoul National University, Seoul, Korea, where he is currently a Postdoctoral Researcher. His research interests include LMI-based control, optimal and robust control, network-based control, and mechatronics. Dongkyoung Chwa received the B.S. and M.S. degrees from the Department of Control and Instrumentation Engineering in 1995 and 1997, respectively, and the Ph.D. degree from the School of Electrical and Computer Engineering in 2001, all from Seoul National University, Seoul, Korea. From 2001 to 2003, he was a Postdoctoral Researcher with Seoul National University. In 2003, he was a Visiting Research Fellow at The University of New South Wales, Australian Defence Force Academy, and was the Honorary Visiting Academic at the University of Melbourne, Melbourne, Australia. In 2004, he was a BK21 Assistant Professor with Seoul National University. Since 2005, he has been an Assistant Professor with the Department of Electrical and Computer Engineering, Ajou University, Suwon, Korea. His research interests are nonlinear, robust, and adaptive control theories and their applications to the robotics, underactuated systems including wheeled mobile robots, underactuated ships, cranes, and guidance and control of flight systems. Suk-Kyo Hong received the B.S., M.S., and Ph.D. degrees in Electrical Engineering from Seoul National University, Seoul, Korea, in 1971, 1973, and 1981, respectively. His major graduate research works were centered on speed control of induction motors. He was an Exchange Professor at Rensselaer Polytechnic Institute, Troy, NY, from 1982 to 1983, and at the Institut National de Recherche en Informatique et en Automatique, France, from 1988 to 1989. He has been with the faculty of the Department of Electrical and Computer Engineering, Ajou University, Suwon, Korea, since 1976, and was a Visiting Professor at Griffith University, Australia, in 2001 and 2002. His current research interests include robust robot control, microprocessor applications, factory automation, and computer integrated manufacturing.  相似文献   

14.
A parameter search for a Central Pattern Generator (CPG) for biped walking is difficult because there is no methodology to set the parameters and the search space is broad. These characteristics of the parameter search result in numerous fitness evaluations. In this paper, nonparametric estimation based Particle Swarm Optimization (NEPSO) is suggested to effectively search the parameters of CPG. The NEPSO uses a concept experience repository to store a previous position and the fitness of particles in a PSO and estimated best position to accelerate a convergence speed. The proposed method is compared with PSO variants in numerical experiments and is tested in a three dimensional dynamic simulator for bipedal walking. The NEPSO effectively finds CPG parameters that produce a gait of a biped robot. Moreover, NEPSO has a fast convergence property which reduces the evaluation of fitness in a real environment. Recommended by Editorial Board member Euntai Kim under the direction of Editor Jae-Bok Song. Jeong-Jung Kim received the B.S. degree in Electronics and Information Engineering from Chonbuk National University in 2006 and the M.S. degree in Robotics from Korea Advanced Institute of Science and Technology in 2008. He is currently working toward a Ph.D. at the Korea Advanced Institute of Science and Technology. His research interests include biologically inspired robotics and machine learning. Jun-Woo Lee received the B.S. degree in Electronics, Electrical and Communication Engineering from Pusan National University in 2007. He is currently working toward an M.S. in the Korea Advanced Institute of Science and Technology. His research interests include swarm intelligence and machine learning. Ju-Jang Lee was born in Seoul, Korea, in 1948. He received the B.S. and M.S. degrees from Seoul National University, Seoul, Korea, in 1973 and 1977, respectively, and the Ph.D. degree in Electrical Engineering from the University of Wisconsin, in 1984. From 1977 to 1978, he was a Research Engineer at the Korean Electric Research and Testing Institute, Seoul. From 1978 to 1979, he was a Design and Processing Engineer at G. T. E. Automatic Electric Company, Waukesha, WI. For a brief period in 1983, he was the Project Engineer for the Research and Development Department of the Wisconsin Electric Power Company, Milwaukee. He joined the Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, in 1984, where he is currently a Professor. In 1987, he was a Visiting Professor at the Robotics Laboratory of the Imperial College Science and Technology, London, U.K. From 1991 to 1992, he was a Visiting Scientist at the Robotics Department of Carnegie Mellon University, Pittsburgh, PA. His research interests are in the areas of intelligent control of mobile robots, service robotics for the disabled, space robotics, evolutionary computation, variable structure control, chaotic control systems, electronic control units for automobiles, and power system stabilizers. Dr. Lee is a member of the IEEE Robotics and Automation Society, the IEEE Evolutionary Computation Society, the IEEE Industrial Electronics Society, IEEK, KITE, and KISS. He is also a former President of ICROS in Korea and a Counselor of SICE in Japan. He is a Fellow of SICE and ICROS. He is an Associate Editor of IEEE Transactions on Industrial Electronics and IEEE Transactions on Industrial Informatics.  相似文献   

15.
In this paper, we present a control method for a quadruped walking robot inspired from the locomotion of quadrupeds. A simple and useful framework for controlling a quadruped walking robot is presented, which is obtained by observing the stimulus-reaction mechanism, the gravity load receptor and the manner of generating repetitive motions from quadrupeds. In addition, we propose a new rhythmic pattern generator that can relieve the large computational burden on solving the kinematics. The proposed method is tested via a dynamic simulation and validated by implementation in a quadruped walking robot, called AiDIN-I (Artificial Digitigrade for Natural Environment I). Recommended by Editorial Board member Sangdeok Park under the direction of Editor Jae-Bok Song. This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2005-D00031). Ig Mo Koo received the B.S. degree in Mechanical Engineering from Myongji University, Yongin, Korea, in 2003, the M.S. degree in Mechanical Engineering from the Sungkyunkwan University, Suwon, Korea, in 2005, where he is currently working toward a Ph.D. degree in Mechanical Engineering from Sungkyunkwan University. His research interests include artificial muscle actuators, haptics, tactile display, biomimetics and quadruped walking robots systems. Tae Hun Kang received the B.S., M.S., and Ph.D. degrees in Mechanical Engineering from Sungkyunkwan University, Korea, in 2000, 2002, and 2006, respectively. His current research interests focus on biomimetics and quadruped walking robot. Gia Loc Vo received the B.S degree in Mechanical Engineering form Ha Noi University of Technology in Vietnam 2003, the M.S. degree Mechanical Engineering form Sungkyunkwan University, Suwon, Korea, in 2006, where he is currently working toward a Ph.D. degree in Mechanical Engineering from Sungkyunkwan University. His research interests include legged locomotion, walking and climbing robot. Tran Duc Trong received the B.S degree in Mechatronics from HoChiMinh City University of Technology in Vietnam in 2005, where he is currently working toward a M.S. degree in Mechanical Engineering from Sungkyunkwan University. His research interests include biological inspired control and adaptive control of quadruped walking robot. Young Kuk Song received the B.S. degree in Mechanical Engineering from Sungkyunkwan University, Suwon, Korea, in 2006, where he is currently working toward a M.S. degree in Mechanical Engineering from Sungkyunkwan University. His research interests include biomimetics, hydraulic robotics system and quadruped walking robot. Hyouk Ryeol Choi received the B.S. degree from Seoul National University, Seoul, Korea, in 1984, the M.S. degree from the Korea Advanced Technology of Science and Technology (KAIST), Daejeon, Korea, in 1986, and the Ph.D. degree from the Pohang University of Science and Technology (POSTECH), Pohang, Korea, in 1994. Since 1995, he has been with Sungkyunkwan University, Suwon, Korea, where he is currently a Professor in the School of Mechanical Engineering. He was an Associate Engineer with LG Electronics Central Research Laboratory, Seoul, Korea, from 1986 to 1989. From 1993 to 1995, he was with Kyoto University, Kyoto, Japan, as a grantee of scholarship funds from the Japanese Educational Administry. He visited the Advanced Institute of Industrial Science Technology (AIST), Tsukuba, Japan, as a JSPS Fellow from 1999 to 2000. He is now an Associate Editor in IEEE Transactions on Robotics, Journal of Intelligent Service Robotics, International Journal of Control, Automation and Systems (IJCAS). His interests includes dexterous mechanisms, field application of robots, and artificial muscle actua tors.  相似文献   

16.
Gait-based human identification aims to discriminate individuals by the way they walk. A unique advantage of gait as a biometric is that it requires no subject contact and is easily acquired at a distance, which stands in contrast to other biometric techniques involving face, fingerprints, iris, etc. This paper proposes a new gait representation called motion energy image (MEI). Compared with other gait features, MEI is more robust against noise that can be included in binary gait silhouette images due to various factors. The effectiveness of the proposed method for gait recognition is demonstrated using experiments performed on the NLPR database. Recommended by Editorial Board member Jang Myung Lee under the direction of Editor Jae-Bok Song. This work was supported by the Korea Science and Engineering Foundation (KOSEF) through the Biometrics Engineering Research Center (BERC) at Yonsei University. Grant Number: R11-2002-105-09002-0 (2009). Heesung Lee received the B.S. and M.S. degrees in Electrical and Electronic Engineering, from Yonsei University, Seoul, Korea, in 2003 and 2005, respectively. He is currently a Ph.D. candidate of Dept. of Electrical and Electronic Engineering at Yonsei University. His current research interests include computational intelligence, pattern recognition, biometrics, and neural network. Sungjun Hong received the B.S. degrees in Electrical and Electronic Engineering and Computer Science, from Yonsei University, Seoul, Korea, in 2005. He is a graduate student of the combined master’s and doctoral degree programs at Yonsei University. He has studied machine learning, biometrics and optimization Imran Fareed Nizami received the B.S. degree from University of Engg. & Tech. Taxila, Pakistan and the M.S. degree in the Electrical and Electronic Engineering from Yonsei University, Seoul, Korea. He is currently a senior lecturer in Bahria University, Islamabad, Pakistan. His research interests include biometrics, gait recognition, Bayesian and neural networks. Euntai Kim received the B.S. (with top honors), M.S. and Ph.D. degrees in Electronic Engineering from Yonsei University, Seoul, Korea, in 1992, 1994, and 1999, respectively. From 1999 to 2002, he was a Full-time Lecturer with the Department of Control and Instrumentation Engineering at Hankyong National University, Gyeonggi-do, Korea. Since 2002, he has been with the School of Electrical and Electronic Engineering at Yonsei University, where he is currently an associate professor. He was a Visiting Scholar with the University of Alberta, Edmonton, Canada, and the Berkeley Initiative in Soft Computing (BISC), UC Berkeley, USA, in 2003 and 2008, respectively. His current research interests include computational intelligence and machine learning and their application to intelligent service robots, unmanned vehicles, home networks, biometrics, and evolvable hardware.  相似文献   

17.
A new cleaning robot system for suspension insulator strings was developed to prevent a power failure, which can have severe effects on the national industry and economy. Compared with existing cleaning robots using jets of water or water/air, this robot mechanism is superior in insulation as it uses a porcelain-clamping method, and is more useful in mountainous or salt damage areas by adopting a dry cleaning method without water. In addition, in order to increase its cleaning efficiency and to prevent arc generation under live-line conditions, a set of mechanized brush bristles and a voltage-balancing contactor are devised, respectively. Moreover, a manual device for its installation and removal is presented. We confirmed its effectiveness through experiments. Recommended by Editorial Board member Hyoukryeol Choi under the direction of Editor Jae-Bok Song. This work was supported by Electric Power Industry R&D Project performed by Ministry of Commerce, Industry and Energy in Korea. Joon-Young Park received the B.S. degree in Electrical Engineering in 1995, and the M.S. and Ph.D. degrees in Mechanical Engineering from Korea Advanced Institute of Science and Technology (KAIST) in 1997 and 2004, respectively. He is now a Senior Researcher at the Strategic Technology Laboratory in Korea Electric Power Research Institute (KEPRI). His research interests include the robust control of nonlinear systems, the optimum kinematic design of robot manipulators as well as robot systems for the electric power industry. Byung-Hak Cho received the B.S. degree in Electrical Engineering from Hanyang University, Seoul, Korea, in 1982, and the M.S. and Ph.D. degrees in Nuclear Engineering from KAIST, Daejeon, Korea, in 1986 and 1996, respectively. He is now a Chief Researcher at the Strategic Tech-nology Laboratory in KEPRI, Daejeon, Korea. His research interests include robot systems for the electric power industry. Seung-Hyun Byun received the B.S. degree in Electrical Engineering from Yonsei University, Seoul, Korea, in 1992, and the M.S. degree in Electrical Engineering from KAIST, Daejeon, Korea, in 1994. He is now a Senior Researcher at the Power Generation Laboratory in KEPRI, Daejeon, Korea. His research interests include control system design, signal processing and artificial intelligence. Jae-Kyung Lee received the B.S. degree in Electrical Engineering from Kyungpook National University, Daegu, Korea, in 2002, and M.S. the degree in Electrical Engineering from KAIST, Daejeon, Korea, in 2004. He is now a Researcher at the Strategic Technology Laboratory in KEPRI, Daejeon, Korea. His research interests include the development of high-performance robot control and hazardous robot systems.  相似文献   

18.
This paper investigates a new loop design approach of force balance control for the vibratory rate sensor application. The proposed force balance control design takes advantages of the modified automatic gain control configuration in controlling the system’s oscillating dynamics at the sense mode. The adapted automatic gain control scheme and force balance strategy, which maintains a constant oscillation magnitude in the sense mode, have several advantages. First it is possible to analyze a complicated nonlinear feedback system using a linear control theory, which resulted in straightforward prediction of closed loop performance. Moreover the control system to achieve the design goals can be implemented using a relatively simple feedback configuration. An application to the vibratory rate sensor using the proposed automatic gain control configuration witnessed that the force balance control can be validated in a practical design process. Experiments using an actual micromachined rate sensor verified the feasibility of the proposed control scheme with demonstration of enhanced performance. Recommended by Editorial Board member Dong Hwan Kim under the direction of Editor Hyun Seok Yang. This work was supported by the BK21 Project, ST-IT Fusion Engineering program in Konkuk University, 2008. This work was supported by the KICOS through a grant provided by the Korean Ministry of Education, Science & Technology in 2008 (No. K20601000001). Sangkyung Sung is an Assistant Professor of the Department of Aerospace Engineering at Konkuk University, Korea. He received the M.S. and Ph.D. degrees in Electrical Engineering from Seoul National University in 1998 and 2003, respectively. His research interests include inertial sensors, avionic system hardware, integrated navigation, and intelligent vehicle technologies. Sukchang Yun is a Ph.D. course student of the Department of Aerospace Information Engineering at Konkuk University, Korea. He received the M.S. degree in Aerospace Engineering from Konkuk University in 2009. His research interests include MEMS mechatronics and control, INS/GPS integration, and instrumentation. Woon-Tahk Sung is an Senior Engineer of the Communication Reserarch Center, Samsung Electronics Co. Ltd. He received the Ph.D. degree in School of Electrical Engineering from Seoul National University in 2007. His research interests include analog and digital control algorithm, MEMS piezo actuator, circuit design for microsystems using VCM. Chang Joo Kim is an Assistant Professor of the Department of Aerospace Engineering at Konkuk University, Korea. He received the Ph.D. degree in Aeronautical Engineering from Seoul National University in 1991. His research interests include nonlinear optimal control, helicopter flight mechanics, and helicopter system design. Young Jae Lee is a Professor of the Department of Aerospace Engineering at Konkuk University, Korea. He received the Ph.D. degree in Aerospace Engineering from the University of Texas at Austin in 1990. His research interests include integrity monitoring of GNSS signal, GBAS, RTK, attitude determination, orbit determination, and GNSS related engineering problems.  相似文献   

19.
This paper provides a receding horizon control method for SISO bilinear systems in the presence input constraints. Periodically-invariant sets are derived for a bilinear system with respect to a series of time-varying state feedback gains. The dual-mode control strategy is adopted and the periodically-invariant sets are used as target invariant sets. The state feedback gains used to define the target invariant sets are also used to render degrees of freedom to steer the current state into the target set. The region of attraction for the proposed algorithm is enlarged significantly with an extension of the horizon of periodicity while the on-line. Recommended by Editorial Board member Young Soo Suh under the direction of Editor Jae Weon Choi. This project is conducted through the Practical Application Project of Advanced Microsystems Packaging Program of Seoul Technopark, funded by the Ministry of Knowledge Economy. Young Il Lee was born in Korea in 1963. He received his B.Sc., M.S. and Ph.D. in Control and Instrumentation from Seoul National University. He is currently a Professor of the Dept. of Control and Instrumentation, Seoul National University of Technology. He spent two years at Oxford University as a Visiting Research Fellow. Basil Kouvaritakis was born in Athens, Greece in 1948. He was awarded First-Class Honours in Electrical Engineering from the Manchester Institute of Science and Technology, where he also received his Master and Doctorate. He is currently a Professor in Engineering at the Department of Engineering Science and a Tutorial Fellow at St Edmund Hall, Oxford University. Mark Cannon was born in England in 1971. He received M.Eng. and D.Phil. degrees from Oxford University and S.M. from Massachusetts Institute of Technology. He is currently a University Lecturer in Engineering and Fellow of St. Peter’s College, Oxford University.  相似文献   

20.
In this paper, we have introduced a prototype of a fish robot driven by unimorph piezoceramic actuators. To improve the swimming performance of the fish robot in terms of tail-beat angle, swimming speed, and thrust force, we used four light-weight piezo-composite actuators (LIPCAs) instead of the two LIPCAs used in the previous model. We also developed a new actuation mechanism consisting of links and gears. Performance tests of the fish robot were conducted in water at various tail-beat frequencies to measure the tail-beat angle, swimming speed, and thrust force. The tail-beat angle was significantly better than that of the previous model. The best tail-beat frequency of the fish robot was 1.4 Hz and the maximum thrust force was 0.0048 N. A miniaturized power supply, which was developed to excite the LIPCAs, was installed inside the fish robot body for free swimming. The maximum free-swimming speed was 3.2 cm/s. Recommended by Editorial Board member Hyoukryeol Choi under the direction of Editor Jae-Bok Song. This work was supported by the Korea Research Foundation under grant KRF-2004-005-D00045. Quang Sang Nguyen received the BS (2001) and MS (2006) from Hochiminh City University of Technology, Vietnam. Formerly an assistant lecturer of Naval Architect and Marine Engineering, Hochiminh City University of Technology, Vietnam (2001-2006), he is currently a Ph.D. student at the Department of Advanced Technology Fusion, Konkuk University. His specialty is biomimetic system design and smart material application. Seok Heo received the B.S., M.S. and Ph.D. degrees in Mechanical Engineering from Dongguk University in 1998, 2000, and 2003, Respectively. Currently he is a Research Professor at the Artificial Muscle Researcch Center, Konkuk University, Seoul, Korea. His research interests include biomimetics, vibration analysis, system design and control, and smart materials and structures. Hoon Cheol Park received the B.S. (1985) and M.S. (1987) from Seoul National University in Seoul, Korea and Ph.D. (1994) from the University of Maryland at College Park, MD, USA. He joined the Department of Aerospace Engineering, Konkuk University in Seoul, Korea, in 1995, and he is currently a Professor in the Department of Advanced Technology Fusion. His professional experience includes Kia Motors (1986–1988) and Korea Aerospace Research Institute (1994–1995). His specialty is finite element analysis and his recent research has focused on biomimetics. Nam Seo Goo graduated with honors in 1990 from the Department of Aeronautics Engineering of Seoul National University, and he got a masters degree and Ph.D. from the Department of Aerospace Engineering at the same university in 1992 and 1996, respectively. His Ph.D. thesis was on the structural dynamics of aerospace systems. As soon as he obtained the Ph.D. he entered the Agency for Defense development as a senior researcher. In 2002, after four years of service, he joined the Department of Aerospace Engineering at Konkuk University, Seoul, Korea, where he is currently serving as an Associate Professor of the Department of Advanced Technology Fusion. His current research interests include structural dynamics of small systems, smart structures and materials, and MEMS applications. Taesam Kang is a Professor of the Department of Aerospace and Information System Engineering, Konkuk University. He received the B.S., M.S. and Ph.D. degrees from Seoul National University in 1986, 1988 and 1992, respectively. His current research areas are robust control theories and the application of those theories with regard to flight control, development of micro-aerial vehicles and fish robots. Kwang Joon Yoon was awarded the BS (1981) and M.S. (1983) in Aeronautics Engineering from Seoul National University and Ph.D. (1990) in Aeronautics and Astronautics Engineering from Purdue. Since 1991 he has been a Professor at Konkuk University in Korea, where he is currently a Professor of Aerospace Engineering, the Director of the National Research Laboratory for Active Structures and Materials, the Director of the Artificial Muscle Research Center, and the Director of the Smart Robot Center. His current research interests include smart structures and materials, micro-aerial vehicles, and insect-mimetic micro-robot systems. Seung Sik Lee received the B.S. (1996) and M.S. (1998) in Civil Engineering from Hongik University in Seoul, Korea and Ph.D. (2003) in Civil Engineering from Georgia Institute of Technology, GA, USA. Currently he is a Senior Researcher at Korea Institute of Marine Science & Technology Promotion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号