首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用低周疲劳加载方法在Instron电液伺服控制材料试验机上实现了岩石中等应变速率下的动态加载破坏试验。为研究岩石在中等应变速率下的动态加载或动静组合加载的破坏特性及本构关系提供了一种可行的试验方法。试验结果表明:随着加荷频率的增加,岩石试件的平均应变速率也增加,当加荷频率大于0.5Hz时,平均应变速率就可以稳定地达到10^-2s^-1;在保持加荷频率不变的情况下,在岩石材料的弹性变形范围内改变预静载的大小,对岩石试件的平均应变率的影响不大,可以近似地认为加荷频率相同,应变速率也相同。  相似文献   

2.
基于单轴压缩下的花岗岩破坏试验,结合岩石破坏过程中的能量转化机制,对不同加载速率下花岗岩损伤变形的力学参数、能量转化机制进行了探讨。研究表明,随加载速率的提高,花岗岩的峰值应力、起裂应力逐渐增大,峰值应变、起裂应变逐渐降低,但起裂应变与峰值应变之比却呈现先减小后增大的趋势;随着加载速率的提高,花岗岩试件的峰前总吸收能U^0、可释放应变能U^1、耗散应变能U^2均逐渐增大;当加载速率较低时,花岗岩试件沿最大主应力方向实现劈裂、张拉破坏,此时宏观破坏裂纹较少;而当加载速率较高时,岩石试件由多条裂纹贯通破坏,其破坏形式属于劈裂裂纹与剪切裂纹共同主导的混合破坏模式。  相似文献   

3.
为考察加载速率对煤单轴抗压强度特性的影响规律,利用TAW-2000型电液伺服岩石力学试验系统对取自山西省正利煤矿的4~(-1)号煤进行了不同加载速率下的力学性能测试,研究了峰值强度、弹性模量、轴向应变等与加载速率的关系,并探讨了试件可释放弹性应变能与耗散应变能随加载速率的变化规律。研究表明:1)与硬脆岩石不同,煤样的峰值强度随着加载速率的增大呈现先增高后降低的趋势。2)煤样的损伤应力与加载速率呈负相关。3)加载速率越快,试件轴向载荷增加越快,但当加载速率超过1.16×10~(-3) mm/s后载荷增加速度基本稳定。加载速率越快,试件损伤应力出现的越早,试件破坏越快。4)单轴压缩试验第Ⅰ阶段煤样耗散应变能转化速率均处于较低水平,且与加载速率呈负相关,第Ⅱ阶段耗散应变能随加载速率的增加大致呈先增大后减小的趋势,各煤样耗散应变能转化速率的最大值均出现在峰值点或峰后轴向应力陡然跌落点。  相似文献   

4.
通过对类岩石进行不同加载速率下的单轴压缩试验,探究加载速率变化对类岩石应力-应变曲线的影响.研究结果表明:在一定范围内,随着加载速率的增加,类岩石的峰值应力呈递增趋势;在恒速率试验中,不同速率所对应的应力-应变曲线不相同;在变速率试验中,当速率突然增大时,应力-应变曲线会有明显的向上突变;不同速率也会影响类岩石的裂纹发展.  相似文献   

5.
通过AG-Ⅰ250 kN万能实验机对滇东矿区煤体试件进行单轴压缩实验,探讨了突出危险煤体在不同荷载速率环境下的强度特性与破碎特征。结果表明:煤体应力—应变曲线经历线弹性、塑性、峰后破坏3个阶段,弹性特征随加载速率的增加愈发明显;随着加载速率的增加,煤体峰值应变增大,弹性模量与加载速率呈线性关系;煤体在单轴压缩条件下的破坏形式多表现为脆性破坏,随着加载速率的增加,破碎煤样的折算直径减小,新增表面积增大,整体破碎程度随加载速率的增加而增大,与宏观煤体破坏剧烈程度吻合;不同加载速率下煤体强度特征符合Coulomb准则,峰值强度与达到破坏时间与加载速率呈线性关系。  相似文献   

6.
蠕变是应力不变时,变形随时间增加而增长的现象。对矿区不同深度岩石试件进行了不同应力水平单轴逐级加载条件下的蠕变实验,实验结果表明:在低应力水平时,岩石蠕变应变一般很小,随着应力的增大,轴向蠕变有缓慢增大的趋势;随着深度的增大,即矿床由浅到深部,岩石蠕变应变增量和蠕变应变增加率大致呈增加的趋势;随着深度的增加,岩石的蠕变变形性有逐渐增强的趋势。  相似文献   

7.
通过进行分级加载条件下的岩石蠕变试验,研究了灰岩在不同应力水平状态下的蠕变特征。试验结果表明:只有在恒载起始阶段,岩石会有短时的减速蠕变现象出现;随着应力水平提高,轴向应变持续增加且增长速率越来越大,且横向应变的应变增长速率也趋于明显;由应变-时间曲线计算出其斜率,斜率变化共经历了3个阶段,第1阶段岩石的应变斜率较小,第2阶段随着应力增加,岩石变形有增大趋势,第3阶段岩石的应力水平接近岩石破坏阶段时,斜率变化有突增现象,此时岩石变形急剧。  相似文献   

8.
在巴西劈裂试验中选用最基本的垫条加载的加载方式条件下,对不同厚径比的茅口灰岩岩石试件采用不同的加载速率进行巴西圆盘劈裂试验.通过试验数据分析发现,在相同的厚径比下,随加载速率的提高,岩石的抗拉强度小幅增加;当采用相同的加载速率时,茅口灰岩抗拉强度均随厚径比的增加而减小,存在一定的尺寸效应.运用FLAC3D数值分析软件,针对垫条加载进行了不同厚径比及加载速率的巴西劈裂数值模拟试验,结果表明水平拉应力最大值位于圆盘轴线上端面中心点,即圆盘开始起裂的位置位于端面中心点附近.随着加载速率增加,圆盘端面中心点等效应力增大;随着厚径比增加,圆盘端面中心点等效应力减小.最后提出了在垫条加载下抗拉强度的修正公式,消除厚径比及加载速率对岩石抗拉强度的影响,并验证了修正公式的有效性.  相似文献   

9.
为了更准确地认识真三轴应力条件下加卸荷速率对岩石力学特性与能量特征的影响规律,利用自主研发的“多功能真三轴流固耦合试验系统”开展了砂岩真三轴加卸荷力学特性试验,实现了最小主应力方向上的单面卸荷,模拟实际围岩应力演化过程。试验结果表明:随着卸荷速率的增大,砂岩破坏时的最大主应力、最大主应变、最小主应变和体积应变均减小、中间主应变增大,扩容起始点提前,岩样破坏模式逐渐由剪切破坏转为张拉破裂,且张性裂纹多集中于卸荷面附近。加载速率的增大,砂岩破坏时的最大主应力、最大主应变、最小主应变和体积应变增大,扩容起始点滞后,岩样破坏模式逐渐由张剪破坏转向剪切破坏,产生非贯通性裂纹。引入应变偏应力柔量分析不同加卸荷速率下砂岩变形规律,最小主应变和体积应变的偏应力敏感性与卸荷速率呈正相关,最大主应变的偏应力敏感性与加载速率呈正相关。此外,岩石在峰值应力前能量演化有明显的阶段性,峰前吸收的能量大多以可释放弹性应变能的形式存储,耗散能在峰后超过弹性应变能。耗散能比例Ud/U随着最大主应变的增加呈现出先增后降再增的趋势,峰值应力时Ud/U随着卸荷速率的增大而减小,随着加载速率的增大而增大。达到峰值应力时,岩石吸收的总能量U、弹性应变能Ue、耗散能Ud和相应的应变能增量与时间间隔的比值u均随着卸荷速率的增大而减小,随着加荷速率的增大而增大。  相似文献   

10.
为研究不同应力环境下泥质巷道围岩的变形破坏特征,选取典型泥质粉砂岩岩样,开展了三轴剪切试验,获得了不同主应力加载速率和围压下泥质粉砂岩的应力应变曲线。并采用FLAC3D数值模拟软件对三轴剪切试验结果进行验证,发现增大试验机主应力加载速率以及围压均能提高岩石试件抗压强度。同时,通过收集岩样碎屑,采用“粒度-数量”分形维数研究方法,分析了岩样的破坏规律。发现主应力加载速率、围压越大,试件破坏程度越低,碎屑分形维数值就越小。以上结果表明,主应力加载速率和围压能够有效减缓岩石试件的裂纹扩展速度,减缓岩石试件损伤的发展,增强其抗压强度,同时降低试件破坏后所表现出的破碎性。  相似文献   

11.
岩石试件SHPB劈裂拉伸试验中能量耗散分析   总被引:5,自引:0,他引:5  
利用直径50 mm变截面分离式Hopkinson压杆(SHPB)试验装置,对厚径比0.5的煤矿砂岩巴西圆盘试件进行对径加载,采取改变驱动气压的方法实施不同加载速率的动态劈裂拉伸试验。研究了砂岩试件动态劈裂拉伸破坏过程中的能量构成和耗散特征;尝试从能量角度出发,对砂岩试件动态劈裂拉伸破坏形态、平均应变率效应和动态拉伸应力强度进行能耗分析;发现试件吸收能量绝大部分耗散于岩石的损伤演化和变形破坏,可以较好地反映砂岩试件在冲击载荷作用下的抗拉性能变化。结果表明:砂岩试件拉伸应力强度与吸收能量随平均应变率增加近似对数关系增加,表现出显著的应变率相关性。研究成果可为岩石类脆性材料动态拉伸力学性能研究提供参考。  相似文献   

12.
以高速相机和CCD相机搭建数字图像采集系统,利用数字散斑相关方法对数字图像进行分析,开展不同加载速率下岩石断面细观特征研究。对不同加载速率下岩石断裂强度、沿晶断裂特征以及裂隙演化特征进行了分析。从分析结果可知,随着加载速率增加,岩石断裂强度总体呈增加趋势;通过对不同加载速率下沿晶断裂占断面总面积比例的分析可知,随着加载速率增加,沿晶断裂占断面总面积的比例呈先减小后增大的变化趋势;从图像灰度相关性角度分析可知,不同加载速率作用下岩石断裂过程中,裂隙演化特征存在较大差异。  相似文献   

13.
利用相似材料配制类软岩试件,对类软岩试件进行不同围压下不同加载速率的三轴破坏室内试验,分析了不同围压下不同加载速率对类软岩的应力应变曲线、三轴峰值强度、轴向应变等物理参数的影响。得出结论,相同围压下,类软岩试件峰值强度、应变整体上随加载速率增大先升高后降低,但相比围压为0的环境,峰值强度降低缓慢;相同加载速率下,围压越高,峰值强度和应变越大;加载速率为0.5 MPa/s时,相邻围压间的峰值强度差值较为均等。  相似文献   

14.
利用自主研制的伺服控制三轴岩石力学试验机,研究了砂岩在0.01~1μm/s不同加载速率下全应力应变过程中的渗透特性演化规律。结果表明:不同加载速率下砂岩渗透率随应变增加存在阈值渗透率、拐点渗透率和峰值渗透率,对应的应变为阈值应变、拐点应变和峰值应变;不同加载速率下,砂岩渗透率曲线变化趋势基本一致,即砂岩渗透率随应变变化呈现阶段性,初始应变至阈值应变为第一阶段,渗透率随应变增加不断降低,阈值应变至拐点应变为第二阶段,渗透率随着应变的增加缓慢增加,拐点应变至峰值应变为第三阶段,渗透率在该阶段内迅速增加,直至达到最大值;峰值应变之后是第四阶段,该阶段内渗透率随应变增加而略微降低;随加载速率从0.01μm/s增加至1μm/s,拐点应变之后的渗透率随加载速率增加而降低。  相似文献   

15.
采用双轴伺服实验机开展不同加载速率下花岗岩巷道岩爆模拟实验,分别采用红外热像技术和岩石颗粒筛分方法获取花岗岩巷道岩爆岩石碎屑温度和不同粒度等级岩屑质量,重点研究速率效应影响下巷道岩爆岩石碎屑温度变化特征和碎屑粒度-质量分布规律,揭示不同加载速率条件下的巷道岩爆破坏特征。研究结果表明:随着加载速率的增加,花岗岩巷道岩爆产生的岩石碎屑温度随之升高、质量随之增大,说明加载速率的增加促进了巷道围岩损伤破坏;随着加载速率增大,微粒岩屑质量占比保持不变,细粒岩屑和中粒岩屑质量占比随之减小,粗粒岩屑质量占比随之增大,说明加载速率增大,岩爆过程中用于切割岩块的能量占比减小,转化为其他形式的能量占比增大。  相似文献   

16.
岩石属于准脆性材料,在单轴压缩的条件下的应力先是随着应变的增加而增加,当应力达到最大值时,应力开始下降,试件呈现应变软化行为。为研究岩石试件单轴压缩时应力-应变软化段的影响因素,基于位移法得到岩石试件单轴压缩时应力-应变曲线软化段的斜率的解析式,并利用FLAC2D软件针对不同剪切带与主应力的方向的夹角α和不同高宽比的岩石试件进行单轴加载数值模拟结果分析并对解析式进行结果验证。  相似文献   

17.
利用自主研制的伺服三轴岩石力学试验机,在常温状态下,对石灰岩试样分别进行不同位移速率加载和不同应力速率加载条件下的三轴压缩试验。结果表明:在不同加载方式和加载速率条件下进行石灰岩的三轴压缩试验,石灰岩都经历了线弹性阶段,塑性强化段,破坏段等阶段;石灰岩试样的弹性模量随加载速率的增加而增大,应力加载速率对弹性模量的影响更为明显;不同应力加载速率及位移加载速率下,石灰岩的屈服应力及应变并未有明显的改变,峰值应力有小幅度增加,而应力速率加载对石灰岩的峰值应力的影响更显著。  相似文献   

18.
针对巷道开挖以及回采过程中围岩应力平衡-卸压二次平衡引起的巷道大变形问题,利用应变测试仪及红外热像仪对白砂岩三轴加载-卸载后单轴再加载的破坏过程进行监测.实验结果表明:试件单轴加载破坏形态与初始损伤程度有关,白砂岩三轴加载超过57.5%峰值强度后卸载,单轴再加载破坏形态发生了改变;岩石单轴加载过程中环向应变速率与岩石裂隙大小有关,裂隙越大,环向应变速率越大,反之,应变速率则越小;单轴再加载损伤后的岩石,存在张裂变形与剪切滑移变形,破坏时以剪切滑移为主.试件剪切破坏时滑移面温度急剧升高.  相似文献   

19.
《煤矿安全》2019,(11):210-215
为了研究加载速率对裂隙砂岩破坏特征和声发射响应的影响,利用RFPA2D数值模拟软件对单轴压缩条件下的预制平行裂纹砂岩进行模拟,分析不同加载速度下的力学特性、声发射响应特性和裂纹演化规律。结果表明:随着加载速率的增加,平行裂隙砂岩峰值强度、峰值应变、岩桥破裂强度和岩桥破裂应变都相应增大;峰值声发射计数也随着加载速率的增加而增大;当加载速率较小时,声发射信号较为丰富,试样破裂以沿预制裂纹扩展的剪切破坏为主,当加载速率较大时,声发射信号更加集中于破裂瞬间,最终的主裂纹为与加载方向平行的张拉裂纹。  相似文献   

20.
为研究分级加载速率对无烟煤蠕变特性的影响规律,通过进行4种不同分级加载速率下无烟煤三轴蠕变试验,分析了分级加载速率和应力水平对煤样瞬时应变、蠕变应变及蠕变速率的影响规律。结果表明:在同级应力水平下,分级加载速率越大,瞬时应变越小,蠕变应变越大,但蠕变应变的增加趋势逐渐放缓;分级加载速率相同时,随着应力水平的提高,煤样瞬时应变表现为快速减小—缓慢减小—增加的整体减小趋势,而煤样蠕变应变则表现为基本不变—缓慢增加—快速增加的整体增大趋势;蠕变速率的变化过程可分为急速衰减、缓慢衰减和稳定3个阶段,同级应力水平下,分级加载速率越大,最大蠕变速率越大,蠕变速率衰减越快。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号