首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper the effect of remanent polarization on electric-mechanical fields near an elliptic cavity in piezoelectric ceramics is studied. The analysis is based on the application of exact electric boundary conditions at the rim of the elliptic cavity, thus avoiding the common assumption of electric impermeability. Expressions for electromechanical fields near the elliptic cavity are derived in a closed form in terms of complex potentials. The result shows that the problem of remanent polarization is similar to the problem of general strain mismatch and the effect of remanent polarization on fracture in poled or depolarized piezoelectric ceramics can not be omitted. When the permitivity of the medium in a cavity is small, the effect of remanent polarization is identical to the effect of a considerable strong positive electric field and the tangent stress at the major axial apex of the elliptical cavity is tensile. Such behavior explains why the positive electric field promotes the crack growth while the negative electric field retards the crack growth and accounts for the anisotropy of fracture toughness under mechanical loads. The results show that the effect of remanent polarization on electromechanical fields near an elliptic cavity depends not only on the geometry of the elliptic cavity, i.e. the ratio of the minor semi-axis to major semi-axis, but also on the ratio of permitivity of the medium in the cavity to permitivity of the piezoelectric ceramic.  相似文献   

2.
Commonly used piezoelectric ceramics such as PZT and PLZT are polarized ferroelectric polycrystals. After poling, remanent strains and a remanent polarization exist in a ceramic material. Remanent field can affect the electroelastic field and consequently plays a critical role in fracture of poled ceramics. Based on a linear constitutive law, the electroelastic field and the energy release rate of an elliptical cavity (or a crack) in a poled piezoelectric are re-examined in this study by including the effects of remanent field. It is noted that the remanent field generally has a minor effect on the stress field and a pronounced effect on the electric field at the apex of the major axis of an elliptical flaw. When the permittivity of the cavity is small, the effect of remanent polarization is similar to that of a very strong electric field applied along the poling direction. However, for the case of a conducting flaw, the remanent field does not influence the electroelastic field and energy release rate. Energy release rate of a flaw in a poled ferroelectric ceramic with and without the remanent polarization is generally different.  相似文献   

3.
In the present work, the polarization distribution around an open crack with different electrical boundary conditions in a single crystal ferroelectric is investigated by using a phase field model. The surface effect of polarization is taken into account in the phase field model, which has not been included in previous ferroelectric crack models. The simulation results show that the impermeable crack and the crack filled with air have a significant influence on the polarization distribution, while the permeable and the crack filled with water have little influence. It is also found that the zero boundary condition of polarization increases the influence of the crack on the permeable crack and the crack filled with water. The results of the present work suggest that a crack filled with air can be approximated as an impermeable crack, and a crack filled with water can be regarded as a permeable crack in ferroelectric materials.  相似文献   

4.
The purpose of the present work is to study the problem of two collinear unequal cracks in a piezoelectric plane under mode I electromechanical loadings via a new approach. For the first time, real fundamental solutions are derived for in-plane piezoelectric governing equations. The cracks are simulated by continuously distributed generalized dislocations and Cauchy singular integral equations are established from the solution of a generalized point dislocation. Both the theorectical derivation and numerical computations are validated by the exact solution in a special case. Parametric studies are conducted to reveal the effects of crack space, crack length, electric loading and remanent electric displacement on energy release rate. It is found that negative electric displacement loading can decrease both the total energy release rate (TERR) and the mechanical strain energy release rate (MSERR), implying that it has a shielding effect on cracks definitely. Positive electric displacement loading can enhance MSERR, but meanwhile it can enhance or reduce TERR depending on the magnitude of the electric loading factor. The effect of a remanent electric displacement along the poling direction is equivalent to that of a positive electric field loading and should be considered in engineering design.  相似文献   

5.
Fatigue crack growth test for piezoelectric ceramics was performed under cyclic electric loading. Double cantilever beam specimen, which was made of two different piezoelectric ceramics, with a through notch was used. The specimens were, varying the amplitude and the mean value, subjected to various cyclic electric fields. It was found that crack growth behavior is greatly dependent on the amplitude and mean value of cyclic electric field and materials. Crack growth rate decreased as electric field increased and finally stopped. Crack growths under the positive, the negative and the shifted electric field were very slow compared to that under fully reversed electric field. However, threshold for the crack propagation did not depend greatly on materials. Then, as possible governing fracture parameters, CED and electric displacement intensity factor were chosen based on the results of electromechanical finite element analysis within linear framework and their closed form equations were also obtained considering the influences of electric boundary conditions inside the notch. Finally, the parameters were correlated with crack growth rate measured experimentally by employing Paris law type equation.  相似文献   

6.
A phenomenological constitutive law for ferroelectric switching due to multi-axial mechanical and electrical loading of a polycrystalline material is developed. The framework of the law is based on kinematic hardening plasticity theory and has a switching surface in the space of mechanical stress and electric field that determines when non-linear response is possible. The size and shape of the switching surface in a modified electric field space remains fixed during non-linear behavior but its center moves around and thus is controlled by a kinematical hardening process. In general, the remanent polarization and the remanent strain are used as the internal variables that control how the center of the switching surface moves. However, the form presented in this paper has a one-to-one relationship between the remanent strain and the remanent polarization, simplifying the constitutive law and allowing remanent polarization to be used as the only internal variable controlling the kinematic effects. The constitutive law successfully reproduces hysteresis and butterfly loops for ferroelectric ceramics. The hysteresis and butterfly loops respond appropriately to the application of a fixed compressive stress parallel to the electric field. In addition, the law successfully handles remanent polarization rotation due to the application of electric field at an angle to the polarization direction.  相似文献   

7.
极化电场取向对应力诱发PZT畴转向增韧的影响   总被引:1,自引:1,他引:0  
研究了PZT压电陶瓷断裂韧性K1c随温度、特别是铁电相变的变化。探讨了极化电场与外应力的相对取向对材料K1c的影响。结果表明,断裂韧性随温度升高而下降至居里点处的最低值,然后略有回升。基于裂纹尖端应力诱发畴转向的增韧机理,极化取向垂直于外张应力时的K1c比平行取向的高。  相似文献   

8.
Phase field simulation of domain structures in cracked ferroelectrics   总被引:1,自引:1,他引:0  
The fracture of ferroelectrics is a complex process which is influenced by various factors, among which are the domain switching near the crack tip, the crack face boundary conditions and the applied electric field. Domain switching near crack tips induces major local nonlinearity, while the crack face boundary conditions vary considerably due to different working conditions. In this work, a phase field model and a generalization of the configurational force theory into this model are used to investigate the microstructure around the crack tip and to quantitatively study the influence of the applied electric field and the crack face boundary conditions (permeable, impermeable, semi-permeable and energetically consistent). Evaluation of the fracture properties is done by the nodal configurational force at the crack tip based on the generalized configurational force theory. Results show that the induced domain structure relies significantly on the loading and on the surface boundary conditions. Among the four different conditions considered, the energetically consistent conditions lead to the smallest crack driving force, and the permeable conditions lead to the largest crack driving force. Calculations also show that positive electric fields tend to inhibit fracture, whereas negative electric fields tend to promote fracture.  相似文献   

9.
This paper considers the non-axisymmetric three-dimensional problem of a penny-shaped crack with permeable electric conditions imposed on the crack surfaces, subjected to a pair of point normal forces applied symmetrically with respect to the crack plane. The crack is embedded in an infinite transversely isotropic piezoelectric body with the crack face perpendicular to the axis of material symmetry. Applying the symmetry of the problem under consideration then leads to a mixed–mixed boundary value problem of a half-space, for which potential theory method is employed for the purpose of analysis. The cases of equal eigenvalues are also discussed. Although the treatment differs from that for an impermeable crack reported in literature, the resulting governing equation still has a familiar structure. For the case of a point force, exact expressions for the full-space electro-elastic field are derived in terms of elementary functions with explicit stress and electric displacement intensity factors presented. The exact solution for a uniform loading is also given.  相似文献   

10.
In this paper the dynamic anti-plane problem for a functionally graded piezoelectric strip containing a central crack vertical to the boundary is considered. The crack is assumed to be electrically impermeable or permeable. Integral transforms and dislocation density functions are employed to reduce the problem to Cauchy singular integral equations. Numerical results show the effects of loading combination parameter, material gradient parameter and crack configuration on the dynamic response. With the permeable assumption, the electric impact has no contribution to the crack tip field singularity. With the impermeable assumption, the direction of applied electric impact loading plays a great role in the behavior of dynamic stress intensity factor, and the existence of electric load always enhances the crack propagation. However, the crack is easier to propagate under the negative electric load than that under the positive electric load.  相似文献   

11.
李琳  周振功  王彪 《功能材料》2006,37(4):580-582,590
应用与时间有关的Ginzburg- Landau方程(time dependent Ginzburg-Landau,简称TDGL方程),在考虑表面效应的条件下分析了应力对外延铁电薄膜铁电性能的影响.计算结果显示剩余极化强度值随着压应力的增加而增加,随着张应力的增加而减小.场致应变值随着压应力的增加而增加,随着张应力的增加而减小.这种变化趋势与实验结果是一致的.考虑表面效应计算得到的剩余极化强度值小于不考虑表面效应时计算得到的数值(当外推长度>0时).  相似文献   

12.
采用复变函数方法和保角映射技术,研究了压电复合材料中含唇形裂纹的无限大体远场受反平面机械载荷和面内电载荷作用下的反平面问题,利用复变函数中的留数定理和Cauchy积分公式,分别获得了电不可通和电可通两种边界条件下裂纹尖端场强度因子和机械应变能释放率的解析表达式。当唇形裂纹的高度趋于零时,可得到无限大压电复合材料中Griffith裂纹的解析解。若不考虑电场作用,所得解退化为经典材料的已知结果。数值算例显示了裂纹的几何尺寸和机电载荷对机械应变能释放率的影响规律。结果表明: 唇形裂纹高度的增加会阻碍裂纹的扩展;机械载荷总是促进裂纹的扩展;电载荷对裂纹扩展的影响与裂纹面电边界条件有关。  相似文献   

13.
基于线性电磁弹性理论,获得了压电-压磁板条中反平面裂纹尖端附近的奇异应力、电场和磁场。假设裂纹位于和板条边界平行的中心位置,并且裂纹是电磁渗透型的。利用Fourier变换,将裂纹面的混合边值问题化为对偶积分方程,即而归结为第二类Fredholm积分方程。通过渐近分析,得到了裂纹尖端附近应力、应变、电位移、电场、磁场和磁感的封闭表达式。结果表明,对于电磁渗透裂纹,电场强度因子和磁场强度因子总为0;板条的宽度对应力强度因子有显著的影响;能量释放率总为正值。  相似文献   

14.
H. G. Beom  K. J. Kang 《Acta Mechanica》2006,185(3-4):201-214
Summary Crack kinking induced by domain switching in a ferroelectric material under purely electric loading is investigated. Boundaries of domain switching zones for the asymptotic problem of a semi-infinite crack under the small scale conditions are determined based on the nonlinear electric theory. Stress intensity factors induced by the domain switching are numerically evaluated using the solution of the switching zone. Numerical results of the kink angle are obtained as a function of the ratio of the coercive electric field to the yield electric field for various polarization angles. Crack kinking in ferroelectric materials subjected to a cyclic electric field is also examined. The crack in the fully poled materials branches with different directions at application of the positive and negative electric fields, respectively. The electric fatigue crack is shown to have a forked crack pattern in the fully poled materials.  相似文献   

15.
Central crack specimens have been used to study the effects of an applied electric field on the fracture toughness of poled soft lead zirconate titanate ceramics (PZT-5). The ultrasonic lapping technique was used to machine the central crack of the specimens used. The present experimental study illustrated that changing the field from negative to positive reduced the fracture toughness of a specimen subjected to an applied electric field. These experimental results were in agreement with the observations made by Park and Sun (J. Am. Ceram. Soc. 78 (1995) 1475) and Heyer et al. (Acta Mater. 46 (1998) 6615). Finite element results were employed to compare with the experimental data. Four fracture criteria, i.e. total energy release rate, mechanical energy release rate, local energy release rate and strain energy release rate, were compared with the experimental results. It was found the local energy release rate, which was defined based on a strip electric saturation model, was in broad agreement with the experimental observations. Moreover, it was found that the strain energy density criterion was unable to describe the effect of electric field on fracture toughness when a large electric field was applied.  相似文献   

16.
用复变函数的保角映射法,采用可渗透边界条件,研究了含裂纹的无限大压电材料在平面内电场和反平面荷载作用下的耦合场,得到了精确的解和场强度因子以及能量释放率。结果表明,电场强度在裂尖没有奇异性,应变、应力、电位移具有1/2阶的奇异性,能量释放率总是正的。  相似文献   

17.
A boundary integral vector potential formulation has been developed to evaluate eddy-current interactions with three-dimensional finite cracks in conductors. The approach is compared with an electric field integral equation method also used for solving crack problems in eddy-current nondestructive evaluation. An important advantage of the vector potential integral formulation is that the kernel has a weak singularity, but a drawback is that two unknown functions must be found on the crack surface. One of these functions, the current dipole density, represents the effect of the crack in terms of an induced source, and the other function is a solution of the two-dimensional Laplace equation. By contrast, the source density alone is needed for a complete solution of the electric field integral equation. In order to determine the surface Laplacian for finite cracks of arbitrary shape, a general numerical solution utilizing the boundary element technique is introduced. Numerical predictions of the eddy-current probe response to a crack give good agreement with experimental measurements, supporting the validity of the formulation  相似文献   

18.
The near crack line analysis method has been used to investigate the exact elastic-plastic solutions of a mode II crack under plane strain condition in an elastic-perfectly plastic solid. The significance of this paper is that the assumptions of the conventional small scale yielding theory have been completely abandoned. The inappropriateness of matching conditions formerly taken at the elastic-plastic boundary ths been corrected as well. By eatching the general solution of the plastic stress (but not the special solution that was adopted) with the exact elastic stresses (but not the crack tip K-dominant field) at the elastic-plastic boundary near the crack line, the plastic stresses, the length of the plastic zone and the unit normal vector of the elastic-plastic boundary, which are sufficiently precise near the crack line region, have been given. The solutions are suitable not only under the condition that the plastic region is sufficiently small but also under the condition that the plastic region is large.  相似文献   

19.
In this article, a piezoelectric hybrid element is presented and optimized by penalty equilibrium approach, and special crack surface element is suggested for exactly implementing the boundary conditions on crack surface. An iteration technique is used to treat one of the electric boundary conditions. Then, a piezoelectric material with crack is numerically studied by the optimized hybrid element method, and the results are compared with the analytical solutions. The stress and the electrical displacement fields with different crack surface conditions are studied, and the influence to those fields arisen by the far field mechanical and electric loading is also studied.  相似文献   

20.
通过构造新的保角映射,利用复变函数的方法,研究了含光滑顶点的正三角形孔边裂纹的横观各向同性的压电弹性体的反平面问题。在电可穿透和电不可穿透裂纹、孔周及裂纹面为自由表面的假设下,充分利用Cauchy积分公式和复变函数方法,得到了裂纹尖端的场强度因子和能量释放率的表达式。数值算例显示了在不同边界条件下裂纹的几何尺寸、机电载荷对能量释放率和机械应变能释放率的影响规律。结果表明:在电可通和电不可通边界条件下,裂纹长度和三角形边长的增加会导致能量释放率增加,机械载荷则总是促进裂纹的扩展。在电不可通边界条件下电位移可以促进或抑制裂纹的扩展,而在电可通边界条件下电位移对裂纹扩展没有影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号