首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
近年来,作为锂离子电池正极的磷酸盐材料因为其结构稳定,循环性能优良,受到研究者的普遍关注。磷酸钒锂理论容量为197mAh/g,具有较高的能量密度和充放电电压平台,热稳定性好,相比其它正极材料具有明显的优势。但是磷酸钒锂电子电导率较低,且不适合大电流充放电的缺点限制了其实际应用,必须对其进行改性研究。目前改性方法主要包括表面包覆导电材料,金属掺杂,控制形貌特征等。结合磷酸钒锂的结构,综述了各种改性方法的工艺及优缺点,结合本研究团队关于磷酸钒锂改性的研究成果探讨了目前存在的问题及今后的研究趋势。  相似文献   

2.
日本GS汤浅公司开发出安全性好、输出特性优异的锂离子电池用正极材料“磷酸钒锂”。由于该材料具有高的输出密度及优异的安全性,因此有望降低电池系统的成本。该公司下一步计划开发使用这种磷酸钒锂正极材料的锂离子电池,用于混合电动车及配有怠速熄火装置的微型混合电动车。  相似文献   

3.
锂离子电池(LIB)近年来受到了广泛的关注,与其他可充电电池相比,锂离子电池LIB具有更高的能量密度、功率和效率.正极作为LIB的关键部件,其特性会显著影响LIB的性能.本文分类综述了一些锂离子正极材料,包括一元、二元、三元金属锂氧化物和磷酸亚铁锂正极材料,并对其优缺点进行了介绍.此外,本文还对已商业化的正极材料物性数...  相似文献   

4.
王皓  李峻峰  马悦  杨亚楠  张佩聪  赖雪飞  岳波 《材料导报》2021,35(21):21127-21142
锂离子电池电极材料对锂离子电池性能提升起着关键作用.钒的价态较多,构成的钒系电极材料具有层状、尖晶石型、反尖晶石型等多种结构.该系列材料通常具有较高的理论比容量,且合成方式多样,性价比高,因此钒系化合物在锂离子电池电极材料的应用上受到了广泛关注,但目前尚缺少对钒系电极材料的系统性总结.本文综述了以钒的氧化物、无锂型金属离子钒酸盐、含锂型钒酸盐及钒磷酸根聚阴离子材料为主要体系的锂离子电池钒系电极材料,并对各体系的结构及电化学性能进行了总结,针对合成锂离子电池钒系电极材料的主要方法(如固相合成法、溶胶-凝胶法、水热法、碳热还原法、液相沉淀法等)进行概述及分析,还对通过纳米化、特殊形貌控制、复合改性等其他改性方式优化的钒系电极材料的性能进行了介绍,最后对钒系锂离子电池电极材料的研究方向和发展前景进行展望,希望对促进该类材料的研究与产业化应用能有所助益.  相似文献   

5.
本工作采用一种具有良好导电性能的多孔结构碳材料与磷酸钒锂通过溶胶凝胶-碳热还原法进行复合,研制出一种锂离子电池正极的新型复合材料。新型电极在0.5C倍率下初始比容量为111.0 m A·h·g~(-1),150圈循环容量保持率为99.2%。在10C倍率循环下复合正极仍有79.8m A·h·g~(-1)比容量和71.9%容量保持率,展示出良好的快充/放性能。复合材料的制备工艺简单,其电化学性能优异和较高含量的磷酸钒锂(LVP)含量符合锂离子电池正极材料的产业实用化的要求,该材料的研发为快充电池工业化提供了一种具有实际意义的材料。  相似文献   

6.
磷酸钒锂是一种新型的锂离子电池正极材料,其电化学性能受合成方法及工艺条件的影响.介绍了Li3V2(PO4)3的结构特点及充放电过程的电化学特征.全面综述了采用固相反应法、溶胶-凝胶法及微波法等制备磷酸钒锂的研究现状,并比较了各种方法的利弊.  相似文献   

7.
高能量密度的电极活性材料是提高电芯能量密度的关键。提高锂离子电池能量密度的途径主要包括开发高比容量正负极材料和高放电电压平台正极材料。本研究综述了几种典型的具有高能量密度锂离子电池正、负极材料的最新研究进展,包括多电子反应、富锂、聚阴离子和镍锰酸锂正极材料以及硬碳、硅基和锡基负极材料,介绍了各种材料的特点和电化学性能,重点阐述了制备这些材料的典型方法和进展,并展望了高能量密度锂离子电池的发展方向和应用前景。  相似文献   

8.
综述了近年来锂离子电池正极材料的研究情况.介绍了几种主要的锂离子二次电池正极材料,包括锂钴氧化物、锂镍氧化物、锂锰氧化物的结构、制备、电化学性能及改性方法等.并通过水热法合成获得均匀无杂相的、α-NaFeO2层状结构的HT-LiCoO2超细粉末.  相似文献   

9.
梁兴  高国华  吴广明 《材料导报》2018,32(1):12-33, 40
V_2O_5具有独特的层状结构,适合于锂离子的存储,与传统的锰酸锂、钴酸锂、磷酸铁锂等正极材料相比,具有高的理论比容量、功率密度以及价格低廉、原材料丰富等优势,在作为锂离子电池正极材料方面备受关注。但V_2O_5低的固有电导率及锂离子扩散系数,导致其容量保持率低和倍率性能差;此外,充放电过程中反复的相变会引起结构的不稳定,而且氧化钒会部分溶于电解液,因此表现出差的循环性能。正是由于这些制约因素的存在,对V_2O_5的固有缺陷进行改性研究以提高氧化钒正极材料的电化学性能成为重要的研究热点。将氧化钒进行纳米化以增大比表面积和缩短离子扩散距离,同时通过复合、掺杂改性等方法提高材料的导电性和循环稳定性,从而使V_2O_5正极材料表现出优异的电化学性能成为可能。文章从氧化钒电极材料纳米化,在纳米化的基础上复合导电材料,调节工作电压窗口,掺杂金属离子这四类方法阐述对氧化钒电化学性能的改善,以及各种方法对电极电化学性能的影响。  相似文献   

10.
锂离子电池等储能器件已被应用于电子设备和电动汽车中,但其低的理论容量已不能满足需求。锂硫电池因其具有高的理论比容量(1672 m Ah·g~(-1)),有望满足高能量密度的需求,但是锂硫电池还存在多硫化物的穿梭、硫导电性差等问题,阻碍了它的商业化应用。针对以上问题,不仅可以从正极材料的结构设计出发,也可以从电池的整体结构设计入手寻求解决的方法。评述了碳质材料的功能化设计在正极、正极与隔膜间的夹层设计、隔膜的优化以及新型隔膜中的研究进展,分析了结构、材料与锂硫电池性能之间的关系,指出了锂硫电池中碳质材料的发展方向。  相似文献   

11.
LiEr0.02Fe0.98PO4/C composite cathode was synthesized by a simple solution method with polyethylene glycol (PEG) as the reductive agent and carbon source. The effect of erbium doping on the electrochemical behavior of LiFePO4 was studied in this paper. The samples were characterized by X-ray powder diffraction and scanning electron microscopy and the electrochemical properties were investigated by the charge-discharge test. An initial discharge capacity of 149 mAh·g-1 was achieved for the LiEr0.02Fe0.98PO4/C composite cathode with a rate of 0.1 C. The electronic conductivity of Er doped LiFePO4/C was measured as 10-2 S·cm-1. The results indicated that erbium doping did not destroy the lattice structure of LiFePO4 and enlarge the lattice volume. These changes are beneficial to the improvement of the electrochemical performance of the LiFePO4 cathode.  相似文献   

12.
A modified solid-state method was used to prepare LiFePO4. With the aid of deionized water, a mixture containing Fe2O3, NH4H2PO4 (or (NH4)2HPO4), LiOH, glucose and oxalic acid was prepared into fluffy powders, which were heated in a carbon-coated crucible at 700 degrees C for 3 hours to synthesize LiFePO4 without any inert gas flow. For the first time, the roles of NH4H2PO4 and (NH4)2HPO4 on the preparation of LiFePO4 were systematically investigated. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS), revealing that the crystallinity of the LiFePO4 sample prepared from NH4H2PO4 is superior to that prepared from (NH4)2HPO4 and the particle size of the sample prepared from NH4H2PO4 is smaller than that prepared from (NH4)2HPO4. The specific capacity, cycle property and rate capabilities were also compared between the as-prepared LiFePO4 samples. A better electrochemical performance was observed in the sample prepared from NH4H2PO4.  相似文献   

13.
以FeSO_4·7H_2O,LiOH·H_2O和H_3PO_4为原料,葡萄糖为改性剂,采用微波水热法合成具有正交晶系橄榄石结构的LiFePO_4/C复合材料。借助XRD,SEM,EDS和电化学性能测试等分析,研究葡萄糖对产物组成、结构、微观形貌和电化学性能的影响。结果表明:葡萄糖改性后,LiFePO_4结构中Fe,P和O原子间的结合增强,颗粒尺寸减小,表面有碳层包覆,电化学性能提高。LiFePO4/C在0.1C倍率下的首次放电比容量为125.6mAh/g;1.0C倍率下的首次放电比容量为106.2mAh/g,30次循环后的容量保持率为91.3%。  相似文献   

14.
采用高温固相法合成了组成为Li(MnxFe1-x)PO4(x=0、0.2、0.4、0.6、0.8、1.0)的锂离子电池正极材料。通过对合成样品的XRD、SEM及电化学性能(循环性能,大电流放电性能)的研究表明,少量Mn的掺杂未影响到LiFePO4的晶体结构,但显著改善了它的电化学性能。Li(Mn0.2Fe0.8)PO4与LiFePO4材料相比有更好的电化学性能,在低放电倍率(电流密度为20mA/g)时,放电容量为150mAh/g,当放电倍率提高到2C时,放电容量仍可达113mAh/g,且循环性能良好。  相似文献   

15.
Olivine-structured pure LiFePO4 and doped Li(M, Fe)PO4 (M=La, Ce, Nd, Mn, Co, Ni) have been synthesized by a solvothermal method.X-ray diffraction and field emission scanning electron microscopy analyses indicate that the as-prepared LiFePO4 is well-crystallized nanopowders without any detectable impurity phases.The electronic conductivity of LiFePO4 is enhanced by around 1-3 orders by doping.It was found that doping alone is not sufficient for the high-rate performance of LiFePO4 and surface coating with such as carbon should be needed.The best dopant for LiFePO4 is Nd among those studied in the present work.Accordingly, doping with 1 mol fraction Nd leads to an increase in 70 mAh/g at 0.1 C for the hydrothermally synthesized sample and 50 mAh/g at 1.0 C after carbon-coating in comparison with the undoped samples.  相似文献   

16.
以碳酸锂、草酸亚铁、磷酸二氢铵、葡萄糖为原料,添加不同的过渡金属乙酸盐(乙酸锰、乙酸钴、乙酸镍、乙酸锌),在氩气保护下采用高温固相法制备LiFePO4/C复合材料.采用X射线衍射、扫描电子显微镜、同步热分析、恒电流充放电、电化学阻抗、循环伏安等方法研究掺杂金属离子及掺杂量对LiFePO4/C晶体结构和电化学性能的影响.结果表明,LiFe0.9M0.1PO4/C(M=Mn、Co、Ni、Zn)样品的晶体结构均与橄榄石型LiFePO4相同.掺杂过渡金属阳离子可以提高LiFeP04/C的还原电位,降低氧化电位,缩小氧化还原峰间距,提高化学反应的可逆性.掺杂后的样品在5C下的放电性能较好,以LiFe0.9Ni0.1PO4/C的放电容量最高,达到89 mAh/g.  相似文献   

17.
采用碳热还原法以磷铁和碳酸锂为原料合成了LiFePO4,用XRD、恒流充放电法和EIS对其进行表征,用TG-DTA分析了反应过程。预焙烧过程中磷铁中的磷与碳酸锂反应形成Li4P2O7和LiFeP2O7,再与中间产物Fe2O3、Fe3O4和补充磷源NH4H2PO4进一步反应生成LiFePO4。产物具有良好的电化学性能,在0.1C时放电容量可以达到151.68mAh/g,0.2和0.5C分别循环10和20次后放电容量仍有125.94和103.51mAh/g,衰减率分别为4.23%和7.24%。不同荷电状态的EIS结果表明:放电至2.4V具有最小的溶液阻抗;界面阻抗由于充放电至3.4V时包括一部分不稳定的SEI膜,因此比充放电至2.4V时大;随着充放电过程的继续,反应过程由反应控制逐渐变为扩散控制。  相似文献   

18.
采用化学氧化法, 以吡咯为单体、 三氯化铁为氧化剂、 苯磺酸钠为掺杂剂在磷酸铁锂颗粒表面进行原位聚合, 制备了聚吡咯/磷酸铁锂(PPy/LiFePO4)复合材料。用FTIR、 XRD和SEM对PPy/LiFePO4复合材料进行了结构与形貌表征。用电化学工作站和充放电测试系统对复合材料的电化学性能进行了表征。结果表明: PPy/LiFePO4复合材料作锂二次电池正极具有良好的充放电循环性能。当PPy质量分数为17%, 充放电电流为0.1 mA时, PPy/LiFePO4复合材料最高放电比容量达163 mAh·g-1, 50次循环之后放电比容量仍为初始时的94.9%; 与LiFePO4相比, 当PPy的含量适当时, PPy/LiFePO4复合正极材料的放电比容量会有明显提高。PPy的加入提高了LiFePO4的电子电导率, 从而提高了活性物质有效利用率, 因此PPy/LiFePO4复合材料的比容量和循环性能均得到了提升。  相似文献   

19.
金属元素掺杂能从本质上改善Li3V2(PO4)3的电子电导率和锂离子扩散速率,从而提高材料的电化学性能。概述了近年来金属元素掺杂Li3V2(PO4)3的研究进展,分别从掺杂元素和表征技术两方面进行综述,介绍了Mg2+、Ni 2+、Cr3+、Co2+等金属离子掺杂对Li3V2(PO4)3的结构以及电化学性能的影响,并对进一步的研究方向和发展趋势提出了见解。  相似文献   

20.
采用两步固相原位烧结掺杂法制备了一系列镍掺杂的锂离子电池正极材料LiFe1-xNixPO4(x=0、0.03、0.05、0.07、0.10、0.15).Ni替代部分Fe,改变了LiFePO4的晶胞参教,细化了晶粒.充放电实验研究表明,低放电倍率(0.1C)时,LiFe0.095Ni0.05PO4的首次放电容量最大,为155mAh/g,较LiFePO4增加了22.8%;0.5C时,其容量为132mAh/g,较LiFePO4增加了14.7%;放电倍率增加为1C时,其容量也能达到122mAh/g,较LiFePO4增加了16.1%.适量掺杂Ni可提高LiFePO4的充放电比容量,改善其高倍率充放电性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号