首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Furnace nitridation of thermal SiO2 in pure N2 O ambient for MOS gate dielectric application is presented. N2O-nitrided thermal SiO2 shows much tighter distribution in time-dependent dielectric breakdown (TDDB) characteristics than thermal oxide. MOSFETs with gate dielectric prepared by this method show improved initial performance and enhanced device reliability compared to those with thermal gate oxide. These improvements are attributed to the incorporation of a small amount of nitrogen (~1.5 at.%) at the Si-SiO2 interface without introducing H-related species during N2O nitridation  相似文献   

2.
Stress-induced leakage current (SILC) is studied in ultrathin (~50 Å) gate oxides grown in N2O or O2 ambient, using rapid thermal processing (N2O oxide or control oxide, respectively). MOS capacitors with N2O oxides exhibit much suppressed SILC compared to the control oxide for successive ramp-up, constant voltage DC, and AC (bipolar and unipolar) stresses. The mechanism for SILC is discussed, and the suppressed SILC in N2O oxide is attributed to suppressed interface state generation due to nitrogen incorporation at the Si/SUO2 interface during N2O oxidation  相似文献   

3.
Time-dependent dielectric breakdown (TDDB) characteristics of MOS capacitors with thin (120-Å) N2O gate oxide under dynamic unipolar and bipolar stress have been studied and compared to those with control thermal gate oxide of identical thickness. Results show that N2O oxide has significant improvement in t BD (2×under-Vg unipolar stress, 20×under+Vg unipolar stress, and 10×under bipolar stress). The improvement of tBD in N2O oxide is attributed to the suppressed electron trapping and enhanced hole detrapping due to the nitrogen incorporation at the SiO2/Si interface  相似文献   

4.
We have investigated RIE-induced damage in MOS devices with thermal oxide as well as N2O-annealed oxide as gate dielectrics. A systematic improvement in robustness against RIE-induced damage is seen when N2O flow rate and/or N2O anneal temperature are increased. We have demonstrated a N2O anneal process at 900°C, which provides a robust SiO2/Si interface against plasma damage and hot carrier stress  相似文献   

5.
The performance and reliability of p-channel MOSFETs utilizing ultrathin (~62 Å) gate dielectrics grown in pure N2O ambient are reported. Unlike (reoxidized) NH3-nitrided oxide devices, p-MOSFETs with N2O-grown oxides show improved performance in both linear and saturation regions compared to control devices with gate oxides grown in O2. Because both electron and hole trapping are suppressed in N2O-grown oxides, the resulting p-MOSFETs show considerably enhanced immunity to channel hot-electron and -hole-induced degradation (e.g., hot-electron-induced punchthrough)  相似文献   

6.
In this brief, we present a post-deposition annealing technique that employs furnace annealing in N2O (FN2O) to reduce the leakage current of chemical-vapor-deposited tantalum penta-oxide (CVD Ta2O5) thin films. Compared with furnace annealing in O2 (FO) and rapid thermal annealing in N 2O (N2O), FN2O annealing proved to have the lowest leakage current and the most reliable time-dependent dielectric breakdown (TDDB)  相似文献   

7.
Hot carrier immunity (HCI) of single drain (SD) and lightly doped drain (LDD) n-MOSFET's with gate oxide and N2O gate oxynitride was compared. Gate oxynitride shows better HCI than gate oxide in SD devices but comparable in LDD devices. We show that oxide grown during the poly-silicon oxidation process after gate poly-silicon definition plays an important role in determining the hot carrier resistance of LDD n-MOSFET's with N2O gate oxynitride  相似文献   

8.
Thermal stability and strain relaxation temperature of strained Si 0.91Ge0.09 layers has been investigated using double crystal x-ray diffraction (DCXRD). High quality gate oxynitride layers rapid thermally grown on strained Si0.91Ge0.09 using N2O and the split N2O cycle technique below the strained relaxed temperature is reported. A positive fixed oxide charge density was observed for N2O and split-N2 O grown films. The O2 grown films exhibit a negative fixed oxide charge. The excellent improvements in the leakage current, breakdown field and charge-to-breakdown value of the N2O or split-N2O grown films were achieved compared to pure O2 grown films  相似文献   

9.
High-field breakdown in thin oxides grown in N2O ambient   总被引:1,自引:0,他引:1  
A detailed study of time-dependent dielectric breakdown (TDDB) in N2O-grown thin (47-120 Å) silicon oxides is reported. A significant degradation in breakdown properties was observed with increasing oxide growth temperatures. A physical model based on undulations at the Si/SiO2 interface is proposed to account for the degradation. Accelerated breakdown for higher operating temperatures and higher oxide fields as well as thickness dependence of TDDB are studied under both polarities of injection. Breakdown under unipolar and bipolar stress in N2O oxides is compared with DC breakdown. An asymmetric improvement in time-to-breakdown under positive versus negative gate unipolar stress is observed and attributed to charge detrapping behavior in N2O oxides. A large reduction in time-to-breakdown is observed under bipolar stress when the thickness is scaled below 60 Å. A physical model is suggested to explain this behavior. Overall, N2O oxides show improved breakdown properties compared with pure SiO2  相似文献   

10.
AC hot-carrier effects in n-MOSFETs with thin (~85 Å) N2O-nitrided gate oxides have been studied and compared with control devices with gate oxides grown in O2. Results show that furnace N2O-nitrided oxide devices exhibit significantly reduced AC-stress-induced degradation. In addition, they show weaker dependences of device degradation on applied gate pulse frequency and pulse width. Results suggest that the improved AC-hot-carrier immunity of the N2O-nitrided oxide device may be due to the significantly suppressed interface state generation and neutral electron trap generation during stressing  相似文献   

11.
The effects of postdeposition anneal of chemical vapor deposited silicon nitride are studied. The Si3N4 films were in situ annealed in either H2(2%)/O2 at 950°C or N2O at 950°C in a rapid thermal oxidation system. It is found that an interfacial oxide was grown at the Si3N4/Si interface by both postdeposition anneal conditions. This was confirmed by thickness measurement and X-ray photoelectronic spectroscopy (XPS) analysis. The devices with H2 (2%)/O2 anneal exhibit a lower gate leakage current and improved reliability compared to that of N2O anneal. This improvement is attributed to a greater efficiency of generating atomic oxygen in the presence of a small amount of hydrogen, leading to the elimination of structural defects in the as-deposited Si3N 4 film by the atomic oxygen. Good drivability is also demonstrated on a 0.12 μm n-MOSFET device  相似文献   

12.
This work presents a TEOS oxide deposited on the phosphorus-in-situ doped polysilicon with rapid thermal N2O annealing. The oxide exhibits good electron trapping characteristics with a charge-to-breakdown (Qbd) up to 110 C/cm2. It is due to the good polysilicon/oxide interface morphology obtained by replacing POCl3 doping with in-situ doping and the rapid thermal annealing in N2O. In addition, the N2O annealing densifies the deposited oxide and incorporates nitrogen into the oxide and at the polysilicon/oxide interface, thus improving the electrical characteristics  相似文献   

13.
MOS characteristics of ultrathin gate oxides prepared by furnace oxidizing Si in N2O have been studied. Compared to control oxides grown in O2, N2O oxides exhibit significantly improved resistance to charge trapping and interface state generation under hot-carrier stressing. In addition, both charge to breakdown and time to breakdown are improved considerably. MOSFETs with N2O gate dielectrics exhibit enhanced current drivability and improved resistance to gm degradation during channel hot-electron stressing  相似文献   

14.
The use of aluminum oxide as the gate insulator for low temperature (600°C) polycrystalline SiGe thin-film transistors (TFTs) has been studied. The aluminum oxide was sputtered from a pure aluminum target using a reactive N2O plasma. The composition of the deposited aluminum oxide was found to be almost stoichiometric (i.e., Al2O3), with a very small fraction of nitrogen incorporation. Even without any hydrogen passivation, good TFT performance was measured an devices with 50-nm-thick Al2O3 gate dielectric layers. Typically, a field effect mobility of 47 cm2/Vs, a threshold voltage of 3 V, a subthreshold slope of 0.44 V/decade, and an on/off ratio above 3×105 at a drain voltage of 0.1 V can be obtained. These results indicate that the direct interface between the Al2 O3 and the SiGe channel layer is sufficiently passivated to make Al2O3 a better alternative to grown or deposited SiO2 for SiGe field effect devices  相似文献   

15.
The oxide/Si interface properties of gate dielectric prepared by annealing N2O-grown oxide in an NO ambient are intensively investigated and compared to those of O2-grown oxide with the same annealing conditions. Hot-carrier stressings show that the former has a harder oxide/Si interface and near-interface oxide than the latter. As confirmed by SIMS analysis, this is associated with a higher nitrogen peak concentration near the oxide/Si interface and a larger total nitrogen content in the former, both arising from the initial oxidation in N2O instead of O2  相似文献   

16.
This study aims to improve the electrical characteristics and reliability of low-pressure chemical vapor deposited (LPCVD) Ta2 O5, films by developing a new post-deposition single-step annealing technique. Experimental results indicate that excited oxygen atoms generated by N2O decomposition can effectively repair the oxygen vacancies in the as-deposited CVD Ta2 O5 film, thereby resulting in a remarkable reduction of the film's leakage current. Two other post-deposition annealing conditions are compared: rapid thermal O2 annealing and furnace dry-O2 annealing. The comparison reveals that RTN2O annealing has the lowest leakage current, superior thermal stability of electrical characteristics and the best time-dependent dielectric breakdown (TDDB) reliability  相似文献   

17.
A novel technique of N2O treatment on NH3-nitrided oxide is used to prepare thin gate oxide. Experiments on MOS capacitors and nMOSFET's with this kind of gate dielectric show that N2O treatment is superior to conventional reoxidation step in suppressing both electron and hole trappings and interface trap creation under high-field stress. Interface hardness against hot-carrier bombardment and neutral electron trap generation are also improved. Thus, N2O treatment on NH3 -nitrided oxide shows excellent electrical and reliability properties, while maintaining sufficiently high nitrogen concentration in gate oxide which offers good resistance to dopant penetration  相似文献   

18.
In this letter, a method to grow high quality interpolysilicon-oxynitride (interpoly-oxynitride) film is proposed. Samples, nitridized by NH3 with additional N2O annealing and CVD TEOS deposited on poly-oxynitride (poly-I) with RTA N 2O oxidation, show excellent electrical properties in terms of very high electric breakdown field, low leakage current, high charge to breakdown, and low electron trapping rate. This novel film is a good candidate for an interpoly dielectric of future high density EEPROM and flash memory devices  相似文献   

19.
A reliable fluorinated thin gate oxide prepared by liquid phase deposition (LPD) following rapid thermal oxidation (RTO) in O2 or nitridation (RTN) in N2O ambient was reported. Fluorine (F) atoms incorporated into the oxides during LPD process are found to be helpful to the improvement of oxide quality. It is observed that these fluorinated gate oxides show good properties in radiation hardness, charge to breakdown (Qbd), and oxide breakdown field (Eox) endurances. Interestingly, the Qbd 's for the fluorinated gate oxides are 10 times larger than those for the gate oxides prepared by RTO in O2 or RTN in N2 O directly. Some of the Eox's are even higher than 17 MV/cm for the samples investigated in this work  相似文献   

20.
Frequency-dependent ac-stress-induced degradation in MMOSFETs with N2O-grown and N2O-nitrided gate oxides was investigated. Suppressed device degradation is observed in both N2 O-based devices as compared to SiO2 device for frequency up to 100 kHz, which is attributed to nitrogen incorporation in the gate oxides, Moreover, when comparing the two N2O-based oxides, N2O-grown oxide device exhibits enhanced degradation than N2O-nitrided oxide device. Charge pumping measurements reveal that N2O-nitrided oxide has better immunity to interface-state and neutral-electron-trap generation under dynamic stress  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号