首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
2.
精确估计电动汽车用动力锂离子电池荷电状态(SOC)对于电动汽车的续航里程的估计和动力电池的安全保护具有重要的意义。针对锂离子电池的非线性关系,采用BP神经网络法来估算SOC。以3.2 V/100 Ah的磷酸锂铁电池为研究对象,在恒温条件下采用Arbin BT2000系列的充放电测试仪进行充放电实验采集原始数据,并将数据导入到神经网络模型中去训练和验证。验证结果表明:用BP神经网络法估算SOC的误差能控制在5%以内,验证了模型的准确性,为相似的SOC估计算法的改进提供参考和依据。  相似文献   

3.
杜灵根  彭澎 《电源技术》2017,(11):1605-1607
为了对电池电解液密度进行预测,建立了BP神经网络模型,用电池充放电试验数据对其进行了训练和检验。利用训练后的神经网络模型进行了电池电解液密度的预测,预测值与实测值的最大误差值为0.020 9 g/cm3,均方根误差值为0.004 0 g/cm3左右。结果表明,BP神经网络方法可以满足预测精度要求,从而可用于建立电池剩余电量实时监测系统,降低电池维护工作量并延长电池的使用寿命。  相似文献   

4.
在研究锂电池动态性能的基础上,通过大量数据仿真和实际数据测量及修正,设计了电动汽车电池管理系统。基于FPGA内核,采用SOPC嵌入式系统技术,移植UC/OS-II嵌入式实时操作系统,实现了对电动汽车锂电池数据采集、数据通信、均衡管理和自动保护等功能。结合电池实时电压和电流,采用BP神经网络对电池荷电状态(SOC)及健康状态(SOH)进行准确估算,为电动汽车运行提供了监控措施和安全保障。  相似文献   

5.
6.
BP神经网络预估锂离子电池SOC训练数据选择   总被引:1,自引:0,他引:1  
封进 《电源技术》2016,(2):283-286
采用BP神经网络对电动汽车用动力锂离子电池荷电状态(SOC)预估进行研究,分析了BP神经网络的模型原理及锂离子电池极化现象。对比采用恒流实验数据训练BP神经网络,提出改进BP神经网络训练数据选择方法,以适应变电流的实际循环中,锂离子电池因极化现象而产生的动态非线性,并进行了电池SOC值的预估。实验表明,采用改进训练数据训练的BP神经网络,在电流剧烈变化的实际工况环境下具有更高的SOC预估精度。  相似文献   

7.
胡任  韩赞东  王克争 《电池》2006,36(1):58-59
提出基于MATLAB神经网络工具箱预测静置电池剩余电量的方法。建立了以电池端电压和新旧程度为输入变量的BP网络,用实验数据对网络进行训练及检验。用该网络预测某型MH/Ni电池在静置状态下的剩余电量,误差小于3%。  相似文献   

8.
9.
电池荷电状态(SOC)的预测是影响电动汽车发展的关键技术之一,采用经典BP神经网络控制算法完成了动力电池的SOC估算研究。通过设计工况实验,在Matlab中对该算法进行了仿真验证,结果表明该算法能够很好地拟合动力电池充放电特性,误差可以减小到5%以内。  相似文献   

10.
吴海东  任晓明  那伟  黄超 《电池》2016,(1):16-19
采用BP神经网络对库仑效率进行训练并预测,将预测得到的库仑效率代入改进安时(AH)算法,再基于Moto Hawk进行设计,应用于地铁应急牵引电池组管理系统。以952国产A车为试验对象,结合实际运行情况对荷电状态(SOC)进行估算和分析。试验结果表明,所采用的方法比传统AH法估算精度误差提高4.9%。  相似文献   

11.
利用神经网络进行了动力电池荷电状态(SOC)预测研究。在分析磷酸铁锂电池充放电机理的基础上,采用levenberg-marquardt(LM)算法建立了动力电池的BP(back propagation)神经网络模型,并进行了电池SOC值的预测。结果表明,基于神经网络的电池SOC预测方法具有较高的精度,可用来预测磷酸铁锂电池的SOC值。  相似文献   

12.
为准确预测镉镍蓄电池的放电特性,采用安时积分法预测剩余容量,再以电池工作温度、放电电流、剩余容量为输入量,工作电压为输出量,建立基于Levenberg-Marquardt(LM)算法的BP神经网络模型,经过训练及检验,该模型的预测结果准确,相对误差小于0.5%。实验表明,该模型在温度-20~60℃和放电电流33~165 A能精确预测电池的剩余容量和工作电压,进而准确建立了蓄电池温度、剩余容量、放电电流和工作电压之间的映射关系。  相似文献   

13.
在对车用氢镍电池组进行了不同工况和温度下的充放电实验,获取了大量能真实反映电池动态行为和特征的实验数据的基础上,建立了一个Back-propagation神经网络的车用动力电池组的仿真模型,实现对电池SOC的预测.为提高BP算法的训练速度和估算精度,设计了一种将改进粒子群算法(MPSO)与Leyenberg-Marquardt(LM)算法组合使用的混合算法(MPSO-LM)用于优化训练BP神经网络.仿真结果表明.所提议的MPSO-LM算法比BP算法更有效.具有较快的收敛速度和较高的预测精度.测试结果中97%数据达到5%的误差或更小.  相似文献   

14.
邓伟锋  李振璧 《电测与仪表》2018,55(21):56-60,85
由于微电网蓄电池在工作过程中其电力性能会发生退化,其性能退化具有明显的非线性和波动性的特征,传统的数学建模方法普适性差、不同工况条件下预测受限、精度不足,难以准确的评估其健康状态。针对上述问题,构建了标准BP神经网络和基于遗传算法优化的BP神经网络,借助微电网蓄电池每次放电过程中的可测参数对网络进行训练,使神经网络的权值和阈值得到较为准确的调整。通过测试集对建立的神经网络进行测试,结果表明,基于遗传算法优化的BP神经网络能有效提高评估结果的准确性,使误差结果控制在精度要求的范围内,最大误差在5%以内,平均误差2%。证明了基于遗传算法优化的BP神经网络对不同工况条件下的蓄电池SOH的精确评估是有效可行的。  相似文献   

15.
由于微电网蓄电池工作时的电力特性具有明显的非线性和不规则性,依靠传统数学方法难以准确估计其荷电状态(state of charge,SOC)。针对上述问题,构建了BP神经网络拓扑结构,并采用增强型学习率自适应算法对网络的传统学习模式加以改进,学习时神经网络模型中各神经元间权值得到合理调整,并且提高了误差收敛效率。仿真结果表明,估计结果在预设精度要求的范围之内,平均误差不超过4%,证明经过优化学习算法的BP神经网络模型对蓄电池荷电状态的精确估计是有效可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号