首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soybean oil hydrogenated in the presence of copper-chromite catalysts to 3% linolenate and below requires winterization if it is to pass the cold test. Yields of winterized oil from soybean oil hydrogenated to several linolenate levels were therefore studied. Partially hydrogenated soybean oil was sampled and filtered at intervals during hydrogenation on a pilot plant scale with a commercial copper-chromite catalyst. Samples were then vacuum bleached and filtered to remove dissolved copper, held at 7 C for 48 hr and filtered to remove stearines. The filtered winter oils passed the standard 5.5 hr cold test. For soybean oil in which linolenate was reduced to 0.1% with a commercial copper-chromite catalyst or to 3.0% with a nickel catalyst yields of winter oil were about the same; 92% for a 5.5 hr cold test oil (winterized two days at 7 C) and 89% for a 20 hr cold test oil (winterized two days at 4 C). Presented at the AOCS Meeting, San Francisco, April 1969. No. Market. Nutr. Res. Div. ARS, USDA.  相似文献   

2.
Soybean oil was hydrogenated continuously in the presence of nickel catalysts. The iodine value of the products was varied by changing the oil flow rate and temperature of the reaction. Sulfur-promoted nickel catalyst increased the selectivity for linolenate hydrogenation, but formed much higher proportions oftrans isomers. Linoleate selectivity improved with temperature with both nickel and sulfur-promoted nickel catalysts, buttrans isomerization also increased. The feasibility of this continuous reactor system was demonstrated as a practical means to prepare hydrogenated stocks of desired composition and physical characteristics at high throughput.  相似文献   

3.
Hydrogenation of soybean oil was carried out by nickel/ silica catalysts in a newly developed rotating packed disk reactor (RPDR). The rotation of a catalyst-filled disk facilitated hydrogen transfer into the liquid phase and mixing in the reactor, resulting in an improved threephase reaction. Performance of RPDR in a batch operation was studied by varying temperature, pressure, nickel concentration in the oil, and disk rotating speed. The overall reaction rate increased with these variables, but the selectivity of linoleic acid was high when the hydrogen transfer controlled the reaction on the catalyst.  相似文献   

4.
A statistical method for evaluation of catalysts was used to determine the behavior of palladium catalyst for soybean oil hydrogenation. Empirical models were developed that predict the rate,trans-isomer formation, and selectivity over a range of practical reaction conditions. Two target iodine value (IV) ranges were studied: one range for a liquid salad oil and the other for a margarine basestock. Although palladium has very high activity, it offered no special advantage intrans-isomer formation or selectivity. Palladium can substitute for nickel catalyst, at greatly reduced temperature and catalyst concentrations, for production of salad oil or margarine basestock from soybean oil. Presented at the AOCS meeting, Chicago, May 1983.  相似文献   

5.
The activities of several commercial nickel catalysts were determined by measuring their activation energies. Among these catalysts, G95E, Resan 22, Nysosel 222 and 325, all with low activation energy, were more active than DM3 and G95H, which had higher activation energy. However, the less active catalysts increased the linoleate selectivity of soybean oil during hydrogenation. The yields of bothtrans isomers and winterized oil were higher for the more selectively hydrogenated oil catalyzed by the less active catalysts. In the sensory evaluation, the fractionated solid fat that contained moretrans isomers was lower in flavor scores than the fractionated liquid oil after hydrogenation and winterization of soybean oil.  相似文献   

6.
Anderson Clayton Foods, Richardson, TX 75080 Portions of refined and bleached soybean oil were stored at various temperatures for various lengths of time, then hydrogenated to 70 iodine value (IV) to find the effect of peroxides on the rate of hydrogenation and on characteristics of hydrogenated product. Samples were treated up to 3 wk at up to 65°C and provided samples with peroxide values (PV) of up to 358. All samples were analyzed, hydrogenated, and reanalyzed. Peroxides affected the fatty acid composition as determined by gas chromatography, the calculated iodine value based on fatty acid composition, and rate of hydrogenation. Peroxides also affected the selectivity of hydrogenation and slope of the solids curve in hydrogenated products.  相似文献   

7.
Many investigators associate the poor keeping properties of soybean oil with its linolenic acid content. On the other hand the high linoleic acid content is a desired property from a nutritional point of view. We have therefore developed a process for the preferential reduction of the linolenic acid content by selective hydrogenation. Conventional catalysts for the hydrogenation of fats have a rather low selectivity in this respect. When linolenic acid in soybean oil is hardened (e.g., with a nickel catalyst), most of the linoleic acid is converted into less unsaturated acids. It was found that linolenic acid is hydrogenated much more preferentially in the presence of copper catalysts than in that of nickel and other hydrogenation catalysts. At a linolenic acid content of 2%, soybean oil hardened with nickel catalyst contained about 28% linoleic acid, whereas with copper catalyst the hardened soybean oil contained 49% linoleic acid. By means of our process it is possible to manufacture a good keepable oil of, e.g., I.V. 115 and containing 1% linolenic acid and 46% linoleic acid. The storage stability of this product is comparable with that of sunflower-seed oil. A liquid phase yield of 86% is obtained after winterization at 5C for 18 hr. The high selectivity for linolenate reduction of copper catalysts must be ascribed to the copper part of the catalyst. Investigations into the structure of the catalyst indicate that the active center consists of copper metal crystallites; whether these centers are promoted by the carrier or traces of other substances is under investigation.  相似文献   

8.
Hydrogenation of heptaldehyde to heptyl alcohol was studied with W2 Raney nickel catalyst, prepared in the laboratory, commercial Raney nickel catalyst and Rufert nickel catalyst by varying temperature, catalyst concentration, hydrogen pressure and reaction time. The products were analyzed by gas-liquid chromatography on SE-30 column. The optimum conditions found for quantitative conversion (99.6%) of heptaldehyde to heptyl alcohol were: temperature, 100°C, W2 Raney nickel catalyst concentration, 2% based on heptaldehyde (w/w), hydrogen pressure, 145 psig and reaction time, 1 h. IICT Communication No. 3085.  相似文献   

9.
Phospholipids (PL) are one of the compounds which poison nickel catalysts during the hydrogenation process. It was affirmed that even trace amounts of PL (5—10 ppm P) cause a decrease in catalyst activity. Quantities over 50 ppm P almost totally inhibit the reaction. In bleached oils used for hydrogenation, PL exist as native compounds as well as products of their transformation. In the present work, the effect of native phospholipids, lysophospholipids (LPL) and phosphatidic acids (PA) on the kinetics and chemistry of soybean oil hydrogenation was investigated. It was found that PA were more toxic to nickel catalysts than LPL and native PL. Fine‐grained catalyst was more active and resistant to the poisoning effect of phospholipids than moderate‐grained catalyst. No changes in the oil hydrogenation chemistry were observed in the presence or absence of PL; thus, linoleic and linolenic selectivity and specific isomerization did not undergo any change.  相似文献   

10.
Addition of triethyl silane to copper stearate resulted in an active heterogenous catalyst for the hydrogenation of soybean oil. The linolenate selectivity of this catalyst (KLe/KLo=2.4 to 3.9) was much lower than that obtained with copper chromite (8.4). Unlike copper-chromite catalyst, triethyl silane-activated copper formed stearate during hydrogenation. Both silica and alumina increased catalyst activity. Linolenate selectivity improved slightly in the presence of alumina.  相似文献   

11.
Two samples of soybean oil hydrogenated with copper-containing catalysts at 170 and 200 C were analyzed for their natural and isomeric fatty acids. Methyl esters of the hydrogenated oils were separated into saturates, monoenes, dienes and trienes by countercurrent distribution between acetonitrile and pentane-hexane. Monoenes were further separated intocis- andtrans-isomers on a silver-saturated resin column. Double bond location in these fractions was determined by a microozonolysis-pyrolysis technique. The diene fraction was separated with an argentation countercurrent distribution method, and linoleate was identified by infrared, ozonolysis and alkaliisomerization data. The double bonds in thecis-monoenes were located in the 9-position almost exclusively. However, the double bonds in thetrans-monoene were quite scattered with 10- and 11-isomers predominating. About 86% to 92% of the dienes consisted of linoleate as measured by alkali isomerization. Other isomers identified as minor components includecis,trans andtrans, trans conjugated dienes and dienes whose double bonds are separated by more than one methylene group. No. Utiliz. Res. Dev. Div., ARS, USDA.  相似文献   

12.
New polymer-bound hydrogenation catalysts were made by complexing PdCl2, RhCl3·3H2O, or NiCl2 with anthranilic acid anchored to chloromethylated polystyrene. The Pd(II) and Ni(II) polymers were reduced to the corresponding Pd(O) and Ni(O) catalysts with NaBH4. In the hydrogenation of methyl sorbate, these polymer catalysts were highly selective for the formation of methyl 2-hexenoate. The diene to monoene selectivity decreased in the order: Pd(II), Pd(O), Rh(I), Ni(II), Ni(O). Kinetic studies support 1,2-reduction of the Δ4 double bond of sorbate as the main path of hydrogenation. In the hydrogenation of soybean esters, the Pd(II) polymer catalysts proved superior because they were more active than the Ni(II) polymers and produced lesstrans unsaturation than the Rh(I) polymers. Hydrogenation with Pd(II) polymers at 50~100 C and 50 to 100 psi H2 decreased the linolenate content below 3% and increasedtrans unsaturation to 10~26%. The linolenate to linoleate selectivity ranged from 1.6 to 3.2. Reaction parameters were analyzed statistically to optimize hydrogenation. Recycling through 2 or 3 hydrogenations of soybean esters was demonstrated with the Pd(II) polymers. In comparison with commercial Pd-on-alumina, the Pd(II) polymers were less active and as selective in the hydrogenation of soybean esters but more selective in the hydrogenation of methyl sorbate. Presented at ISF-AOCS Meeting, New York, April 1980.  相似文献   

13.
Homogeneous, supported and precipitated chromium catalysts were prepared from chromium hexacarbonyl in an attempt to selectively hydrogenate canola oil. These chromium compounds showed low activity, lowering the iodine value of the oil by only 10 IV units. The concentration oftrans-isomers, however, was very low (<1% for most runs). Infrared spectroscopy revealed the presence of a Cr(CO)3(diene) PPH3 complex in two of the hydrogenated oils. The selectivity and the mechanism by which chromium catalysts hydrogenate unsaturates are discussed.  相似文献   

14.
New industrial stationary catalysts, which are highly active, stable, and selective by cyclohexane and operate at temperatures of up to 140°C and pressures of up to 8 MPa, have been developed. The Ni-Al-FMo-grade catalyst developed by us is recommended for implementation in the production of cyclohexane from benzene.  相似文献   

15.
Rapid transesterification of soybean oil with phase transfer catalysts   总被引:1,自引:0,他引:1  
Biodiesel is a renewable, non-toxic and biodegradable alternative fuel for compression ignition engines. Biodiesel is produced mainly through base-catalyzed transesterification of animal fats or vegetable oils. However, the conventional base-catalyzed transesterification is characterized by slow reaction rates at both initial and final reaction stages limited by mass transfer between polar methanol/glycerol phase and non-polar oil phase.In our study we used phase transfer catalysts (PTCs) to facilitate anion transfer between polar methanol/glycerol phase and non-polar oil phase to speed up transesterification. The benefits of transesterification by PTCs include no need for expensive aprotic solvents, potentially simpler scaleup and higher activity (shorter reaction time). Various PTCs were investigated for base-catalyzed transesterification. Experimental results showed that base-catalyzed transesterification was enhanced with an effective PTC, indicated by the formation of high methyl ester (ME) content within a relatively short time. Individual operating variables such as molar ratios of methanol to oil, total OH to oil, PTC to base catalyst and agitation including ultrasound were investigated for transesterification with PTC. Product analyses showed that ME content higher than 96.5 wt.% was achieved after only 15 min of rapid transesterification with PTC (tetrabutylammonium hydroxide or tetrabutylammonium acetate as PTC, MeOH/oil molar ratio of 6, total OH/oil molar ratio of 0.22, PTC/KOH molar ratio of 1 and 60 °C). Free and total glycerol contents in the final product from 15 min rapid transesterification with PTC were lower than maximum allowable limits in the standard specification for biodiesel.  相似文献   

16.
The reaction of metallic salts in aqueous solution with sodium borohydride produces finely divided metals that are catalytically active for hydrogenation. Salts of nickel, cobalt, palladium and platinum give active catalysts for the selective hydrogenation of soybean oil. Iron and silver salts, when reduced with sodium borohydride, show no activity at 200C and atmospheric hydrogen pressure. The cobalt catalyst produces the least amount of stearate. Incorporation of palladium, platinum, copper or chromium up to 2% enhance the activity of the nickel catalyst. Copper and chromium salts, when reduced together, form catalysts that hydrogenate linolenyl groups in soybean oil seven times more rapidly than linoleyl groups. No stearate formation is observed with these binary catalysts. Presented at the AOCS Meeting, Houston, April 1965. No. Utiliz. Res. Dev. Div., ARS, USDA.  相似文献   

17.
Hydrogenation rates for the catalytic reduction of soybean oil with a copper-on-silica catalyst increased when the oil was re-refined and bleached in the laboratory. Purification of the re-refined and bleached oil by passage through alumina further enhanced hydrogenation rates. Since these observations suggested that poisons were present in the oil, the effect of minor components of soybean oil upon the activity of copper catalysts was investigated. Free fatty acids, monoglycerides, β-carotene, phosphoric acid, sodium soaps, phosphatides, glycerine, choline, ethanolamine, water, pheophytin, and pyrrole all reduced hydrogenation rates when added to the oil. Organic sulfur added to the oil was a more effective catalyst inhibitor than inorganic sulfur added to the gas. Catalyst activity was affected adversely when iron was added to the oil as a soap or when deposited on the catalyst during its preparation. Squalene, copper soaps, and carbon monoxide had no influence on the activity of the catalyst. Aging of soybean oil also had no effect. There was no significant change in either selectivity or formation oftrans or conjugated diene isomer when these additives were added to the oil.  相似文献   

18.
Four commercial hydrogenations were carried out on 20,000 1b batches of soybean oil with 0.25, 0.5, and 1% fresh copper-chromite catalyst and 1% used catalyst. Hydrogenations proceeded smoothly at catalyst levels of 0.5 and 1%, but the reaction was slow at a 0.25% concentration. Kinetic, selectivity ratio \((K\frac{{Ln}}{{Lo}})\) and fatty acid compositional data were acquired during several of the hydrogenation runs. Nickel contamination, confirmed by analysis of used copper catalyst, lowered selectivity. Copper content of the oil rose during hydrogenation, but normal processing steps, particularly bleaching and winterization, removed it to below levels (0.01–0.02 ppm) detectable by direct atomic absorption spectroscopy. Both copper and chromium remaining in the oil after processing were concentrated by winterization in the stearine fraction. Organoleptic, oxidative, and room odor tests showed that oils of good stability can be produced on a commercial scale by copper hydrogenation and winterization. Information was gained regarding problems involved in the plant use of copper-chromite catalyst for hydrogenating soybean oil for edible purposes.  相似文献   

19.
The effects of various support materials on the catalytic performance of supported platinum catalysts for the hydrogenation of soybean oil were examined. There was a linear relationship between the catalytic activity and the platinum dispersion of the platinum catalysts. Among the examined catalysts, Pt/BaSO4 was effective for the reduction of both trans fatty acid (TFA) and additional saturated fatty acid (ASFA) levels in partially hydrogenated oils (iodine value (IV) = 70). In addition, the relationship between the TFA levels and the electronegativity of the metal ion in the support material was a volcano function.  相似文献   

20.
New metal catalysts for soybean oil transesterification   总被引:5,自引:2,他引:5  
We report here the synthesis, characterization, and use of tin (3-hydroxy-2-methyl-4-pyrone)2(H2O)2, lead (3-hydroxy-2-methyl-4-pyrone)2 (H2O)2, mercury (3-hydroxy-2-methyl-4-pyrone)2-(H2O)2, and zinc (3-hydroxy-2-methyl-4-pyrone)2(H2O)2 as catalysts in the transesterification reaction of soybean oil with methanol. All complexes are active in this reaction, with the following decreasing activities: Sn2+≫Zn2+>Pb2+≈Hg2+. The catalytic activities of these complexes were also compared with classical alkali and acid transesterification catalysis (with NaOH and H2SO4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号