首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transparent polycrystalline Nd:YAG ceramics were fabricated by solid-state reactive sintering a mixture of commercial Al2O3,Y2O3, and Nd2O3 powders. The powders were mixed in ethanol and doped with 0.5 wt% tetraethoxysilane, dried, and pressed. Pressed samples were sintered at 1750°C in vacuum. Transparent fully dense samples with average grain sizes of 10 μm were obtained. The 1 at.% Nd:YAG ceramic was used to research passively Q-switched laser output with a Cr4+:YAG crystal as a saturable absorber. An average output power of 94 mW with a pulse width of 50 ns was obtained when the incident pump power was 750 mW. The slope efficiency was 13%. The pulse energy is 5 μJ, and the peak power is about 100 W.  相似文献   

2.
Neodymium-doped transparent yttrium-aluminum garnet (Y3Al5O12, YAG) (Nd:YAG) ceramics for solid-state laser material were fabricated by a solid-state reaction method using high-purity powders (Al2O3, Y2O3, and Nd2O3) as starting materials and capsule-free hot isostatic pressing (HIP). The mixed powder compacts were presintered at 1600°C for 3 h under vacuum, hot isostatically pressed at 1500°–1700°C for 3 h under 9.8 or 196 MPa of argon gas pressure, and then sintered again at 1750°C for 20 h under vacuum. Although the presintered specimen approached full density after HIP, its optical transmittance was quite low (∼5% at 1000 nm) because of lack of grain growth. Grain growth was observed in the specimens that were hot isostatically pressed and vacuum sintered at 1750°C for 20 h, but numerous pores occurred around the surface of these specimens. Consequently, the optical transmittance of Nd:YAG ceramics that were treated by HIP was inferior to that of the same ceramics that were sintered under vacuum only because of light scattering that was caused by the pores (at the grain boundaries) that were produced during the HIP treatment.  相似文献   

3.
Polycrystalline, transparent YAG (Y3AI5O12) ceramics were fabricated by a solid-state reaction method using high-purity Al2O3 and Y2O3 powders. The mixed powder compacts were sintered at 1600° to 1850°C for 5 h under vacuum. Optical transmittance in the region between the ultraviolet and infrared wavelengths for YAG ceramics (1 mm thick) sintered at 1800°C was similar to that for a YAG single crystal.  相似文献   

4.
Nd,Cr-codoped transparent YAG (Y3Al5O12) ceramics with excellent optical properties were fabricated by a solid-state reaction method using Al2O3, Y2O3, Nd2O3, and Cr2O3 powders of 99.99 wt% purity. The mixed powder compacts were sintered at 1750°C for 20 h under vacuum and annealed at 1400°C for 20 h in an oxygen atmosphere. The Nd,Crcodoped YAG ceramics consisted of grain sizes ranging from 5 to 35 μm and exhibited a pore-free structure. The optical transmittance of a 0.8 at.% Nd,0.4 at.% Cr: YAG ceramic at 1000 nm was nearly equivalent to that of a 0.8 at.% Nd: YAG single crystal. In addition, the fluorescence intensity of the 0.8 at.% Nd,0.4 at.% Cr: YAG ceramic excited by a xenon lamp was double that of the 0.8 at.% Nd:YAG single crystal.  相似文献   

5.
Diode-Pumped Yb:YAG Ceramic Laser   总被引:1,自引:0,他引:1  
Transparent polycrystalline Yb:YAG ceramics were fabricated by solid-state reactive sintering a mixture of commercial Al2O3, Y2O3, and Yb2O3 powders. The powders were mixed in ethanol and doped with 0.5 wt% tetraethoxysilane, dried, and pressed. Pressed samples were sintered at 1730°C in vacuum. Transparent fully dense samples with grain sizes of several micrometers were obtained. The phase from 1500° to 1700°C was important for the grain growth, in which the grains grew quickly and a mass of pores were eliminated from the body of the sample. Annealing was an important step to remove the vacancies of oxygen and transform Yb2+ to Yb3+. The 1 at.% Yb:YAG ceramic sample was pumped by a diode laser to study the laser properties. The maximum output power of 1.02 W was obtained with a slope efficiency of 25% at 1030 nm. The size of the lasering sample was 4 mm × 4 mm × 3 mm.  相似文献   

6.
Silicon carbide (SiC) ceramics have been fabricated by hot-pressing and subsequent annealing under pressure with aluminum nitride (AlN) and rare-earth oxides (Y2O3, Er2O3, and Yb2O3) as sintering additives. The oxidation behavior of the SiC ceramics in air was characterized and compared with that of the SiC ceramics with yttrium–aluminum–garnet (YAG) and Al2O3–Y2O3–CaO (AYC). All SiC ceramics investigated herein showed a parabolic weight gain with oxidation time at 1400°C. The SiC ceramics sintered with AlN and rare-earth oxides showed superior oxidation resistance to those with YAG and Al2O3–Y2O3–CaO. SiC ceramics with AlN and Yb2O3 showed the best oxidation resistance of 0.4748 mg/cm2 after oxidation at 1400°C for 192 h. The minimization of aluminum in the sintering additives was postulated as the prime factor contributing to the superior oxidation resistance of the resulting ceramics. A small cationic radius of rare-earth oxides, dissolution of nitrogen to the intergranular glassy film, and formation of disilicate crystalline phase as an oxidation product could also contribute to the superior oxidation resistance.  相似文献   

7.
Neodymium (Nd):Y3Al5O12 (YAG) ceramics of excellent transparency have been fabricated by solid-reactive sintering, using nanosized γ-Al2O3 and Y2O3 powders as the starting materials. Reaction sequences and sintering behaviors of the powder mixture were characterized by X-ray diffractometry and dilatometry. One feature of the solid reactions involving γ-Al2O3 is the occurrence of hexagonal YAlO3, which is unstable and transforms to perovskite YAlO3 (YAP) upon further heating. Because of the high reactivities of the starting nanopowders, a complete conversion of the powder mixture to YAG has been achieved by heating at 1300°C for 4 h, via Y4Al2O9, hexagonal YAlO3, and YAP phases. In-line transmittances of the 1.5 at.% Nd:YAG ceramics (doped with 0.5 wt% of tetraethyl orthosilicate) at 700 nm are 81.0% and 65.7% after vacuum sintering at 1700° and 1600°C for 5 h, respectively.  相似文献   

8.
Transparent polycrystalline Nd:YAG ceramics were fabricated by solid-state reactive sintering a mixture of commercial Al2O3, Y2O3, and Nd2O3 powders. The powders were mixed in methanol and doped with 0.5 wt% tetraethoxysilane (TEOS), dried, and pressed. Pressed samples were sintered from 1700° to 1850°C in vacuum without calcination. Transparent fully dense samples with average grain sizes of ∼50 μm were obtained at 1800°C for all Nd2O3 levels studied (0, 1, 3, and 5 at.%). The sintering temperature was little affected by Nd concentration, but SiO2 doping lowered the sintering temperature by ∼100°C. Abnormal grain growth was frequently observed in samples sintered at 1850°C. The Nd concentration was determined by energy-dispersive spectroscopy to be uniform throughout the samples. The in-line transmittance was >80% in the 350–900 nm range regardless of the Nd concentration. The best 1 at.% Nd:YAG ceramics (2 mm thick) achieved 84% transmittance, which is equivalent to 0.9 at.% Nd:YAG single crystals grown by the Czochralski method.  相似文献   

9.
The results obtained from the sintering of Al2O3–50TiC (in weight percent) composite in the temperature range from 1650° to 1800°C with addition of Y2O3 are presented. Densification is accelerated by the formation of liquid at temperatures above 1750°C, and 99% of theoretical density can be achieved by vacuum sintering at 1800°C for 15 min. The liquid presented at the sintering temperature is crystallized to YAG (Y3Al5O12) during cooling.  相似文献   

10.
The secondary phase constitution in two sintered AIN ceramics (1.8% and 4.2% Y2O3 additions) was studied as a function of heat treatment temperatures between 1750° and 1900°C under pure nitrogen atmosphere. The effect of the phase constitution on the physical properties, such as density, thermal conductivity ( K ), and lattice constants, and on the mechanical properties in three-point bending, was also investigated. Y3Al5O12 was found to getter dissolved oxygen from the AIN lattice below 1850°C, but evaporated at 1850°C and above. Y4Al2O9 appeared to sublimate below 1850°C in the atmosphere used in this study. Depending on the secondary phase constitution, heat treatment affected thermal conductivity favorably or adversely. Occasionally, samples with similar lattice oxygen contents were found to have different thermal conductivities, suggesting that factors besides dissolved oxygen can also influence K . Lattice parameter measurements indicated that, within the small range of lattice oxygen concentrations in the AIN samples studied, the c-axis was more sensitive than the a -axis to oxygen content.  相似文献   

11.
Y-PSZ ceramics with 5 wt% Al2O3 were synthesized by a sol–gel route. Experimental results show that powders of metastable tetragonal zirconia with 2.7 mol% Y2O3 and 5 wt% Al2O3 can be fabricated by decomposing the dry gel powder at 500°C. Materials sintered in an air atmosphere at 1500°C for 3 have high density (5.685 g/cm3), high content of metastable tetragonal zirconia (>96%), and high fracture toughness (8.67 MPa.m1/2). Compared with the Y-PSZ ceramics, significant toughening was achieved by adding 5 wt% Al2O3.  相似文献   

12.
The reaction kinetics for NiCr2O4 formation and the diffusion of Cr3+ ions into single-crystal NiO were studied between 1300° and 1600°C in air. The experimental activation energy for NiCr2O4 formation was about 83 kcal/mol. After incubation, NiCr2O4 formed by a diffusion-controlled process. The origin of pores at the NiO/NiCr2O4 interface is discussed. The concentration profiles of Cr3+ in NiO were linear because the interdiffusion coefficient was directly proportional to the mol fraction Cr3+. Theoretical considerations indicate that the interdiffusion coefficient equals 3/2 the self-diffusion coefficient of Cr3+, which is rate-determining. The interdiffusion coefficient at 1 mol% Cr2O3 can be expressed as =4×10−3 exp (−55,000/RT) cm2 s−1.  相似文献   

13.
Transparent Ce:YAG (Ce:Y3Al5O12) and Ce:YSAG (Ce:Y3Sc x Al5− x O12) ceramics have been successfully fabricated using Sc3+ to substitute for Al3+ in Ce:YAG. The effect of Sc substitution on the luminescent properties of Ce:YAG has been investigated. At the substitution level of 20 at.% of Sc3+ for Al3+, the emission intensity of Ce:YSAG is the highest. Meanwhile, the doping of Sc into Ce:YAG lattice broadened both the absorption and emission bands, which is believed to be due to the inhomogeneous broadening of the 5 d energy level of Ce3+ caused by the Sc3+ substitution.  相似文献   

14.
A Nd-doped HfO2-Y2O3 ceramic having excellent transmittance was synthesized by HIPing, using high-purity powders (>99.99 wt%) of Y2O3, Nd2O3, and HfO2. The mixed powder compacts of these powders were sintered at 1650°C for 1 h under vacuum and HIPed at 1700°C for 3 h under 196 MPa of Ar. The specimen after HIPing consisted of uniform grains measuring about 30 μm and having pore-free structure. The optical transmittance of 1 at.% Nd-doped 2.6 mol% HfO2-Y2O3 ceramics ranging between visible and infrared wavelength was almost equivalent or superior to that of a Nd:Y2O3 single crystal grown by the Verneuil method.  相似文献   

15.
Equilibrium ratios Cr2+/Cr3+ of chromium oxide dissolved in CaO–chromium oxide–Al2O3–SiO2 melts have been determined by analysis of samples equilibrated at 1500°C under strongly reducing conditions ( p o2= 10−9.56 to 10−12.50 atm). The majority of the chromium is divalent (Cr2+) under these conditions and Cr2+/Cr3+ ratios at given constant oxygen pressures decrease with increasing basicity of the melts, expressed as CaO/SiO2 ratios. In addition, Cr2+/Cr3+ ratios, at a given CaO/SiO2 ratio, are relatively unaffected by the amount of Al2O3 present.  相似文献   

16.
Silicon nitride (Si3N4) ceramics, prepared with Y2O3 and Al2O3 sintering additives, have been densified in air at temperatures of up to 1750°C using a conventional MoSi2 element furnace. At the highest sintering temperatures, densities in excess of 98% of theoretical have been achieved for materials prepared with a combined sintering addition of 12 wt% Y2O3 and 3 wt% Al2O3. Densification is accompanied by a small weight gain (typically <1–2 wt%), because of limited passive oxidation of the sample. Complete α- to β-Si3N4 transformation can be achieved at temperatures above 1650°C, although a low volume fraction of Si2N2O is also observed to form below 1750°C. Partial crystallization of the residual grain-boundary glassy phase was also apparent, with β-Y2Si2O7 being noted in the majority of samples. The microstructures of the sintered materials exhibited typical β-Si3N4 elongated grain morphologies, indicating potential for low-cost processing of in situ toughened Si3N4-based ceramics.  相似文献   

17.
The subsolidus phase relations in the entire system ZrO2-Y2O3 were established using DTA, expansion measurements, and room- and high-temperature X-ray diffraction. Three eutectoid reactions were found in the system: ( a ) tetragonal zirconia solid solution→monoclinic zirconia solid solution+cubic zirconia solid solution at 4.5 mol% Y2O3 and ∼490°C, ( b ) cubic zirconia solid solutiow→δ-phase Y4Zr3O12+hexagonalphase Y6ZrO11 at 45 mol% Y2O3 and ∼1325°±25°C, and ( c ) yttria C -type solid solution→wcubic zirconia solid solution+ hexagonal phase Y6ZrO11 at ∼72 mol% Y2O3 and 1650°±50°C. Two ordered phases were also found in the system, one at 40 mol% Y2O3 with ideal formula Y4Zr3O12, and another, a new hexagonal phase, at 75 mol% Y2O3 with formula Y6ZrO11. They decompose at 1375° and >1750°C into cubic zirconia solid solution and yttria C -type solid solution, respectively. The extent of the cubic zirconia and yttria C -type solid solution fields was also redetermined. By incorporating the known tetragonal-cubic zirconia transition temperature and the liquidus temperatures in the system, a new tentative phase diagram is given for the system ZrO2-Y2O3.  相似文献   

18.
Compositions in the system ThO2-YO1.5 were coprecipitated as oxalates and converted to oxides. Disks were pressed and sintered in oxygen at 1400° to 2200°C. Densities of the sintered disks were 96 to 98% of theoretical. Solid solutions with the fluorite-type structure were formed up to 20 to 25 mole % YO1.5 at 1400°C and up to 45 to 50 mole % YO1.5 at 2200°C. Density data showed that these solid solutions correspond to Th1— x Y x O2—0.5 x , having a complete cation sub-lattice filled by Th4+ and Y3+ ions, and vacancies in the anion sublattice. The observed increase in electrical conductivity with increase in YO1.5content is consistent with charge transport by oxygen ions through a vacancy mechanism. Approximately 7 mole % ThO2 is soluble in YO1.5 at 2200°C. Density results indicate an anion interstitial structure for the Y2O3 phase. Transference number measurements indicate that the electrical conductivities are only partly due to ions.  相似文献   

19.
Addition of Y2O3 as a sintering additive to porous β-SiAlON (Si6− z Al z O z N8− z , z = 0.5) ceramics has been investigated for improved mechanical properties. Porous SiAlON ceramics with 0.05–0.15 wt% (500–1500 wppm) Y2O3 were fabricated by pressureless sintering at temperatures of 1700°, 1800°, and 1850°C. The densification, microstructure, and mechanical properties were compared with those of Y2O3-free ceramics of the same chemical composition. Although this level of Y2O3 addition did not change the phase formation and grain size, the grain bonding appeared to be promoted, and the densification to be enhanced. There was a significant increase in the flexural strength of the SiAlON ceramics relative to the Y2O3-free counterpart. After exposure in 1 M hydrochloric acid solution at 70°C for 120 h, no remarkable weight loss and degradation of the mechanical properties (flexural and compression strength) was observed, which was attributed to the limited grain boundary phase, and with the minor Y2O3 addition the supposed formation of Y-α-SiAlON.  相似文献   

20.
Europium (Eu) was found to act as a solid-state sintering aid in Y2O3 optical ceramics by controlling ionic diffusivity, which in turn leads to enhanced optical transparency. Transparent ceramic samples of Eu-doped Y2O3, with no additional additives, were sintered by uniaxial vacuum hot pressing under 40 MPa and maximum temperature of 1580°C. Optical attenuation was found to decrease with increasing Eu concentrations between 0 and 5 at% for ceramics processed under the same sintering conditions. In order to study the effect of Eu concentration on ceramic densification, the strain rate and grain size during sintering at constant temperature and varied pressure were measured. A diffusional flow densification model was used to derive instantaneous effective diffusion constants for the densification process. Diffusion constants were found to increase with increasing Eu concentration according to a log–linear relationship. Eu2+ was detected in samples after hot pressing through fluorescence spectroscopy, and the extrinsic defect chemistry was found to be dominated by the reduced Eu in solid solution with Y2O3. A sintering model with diffusion rate limited by yttrium interstitial transport and controlled by the incorporation of Eu2+ onto the cation sublattice was found to be in good agreement with experimental diffusivity data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号