首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Eukaryotic translation initiation factor 2 (eIF-2) comprises three non-identical subunits alpha, beta and gamma. In vitro, eIF-2 binds the initiator methionyl-tRNA in a GTP-dependent fashion. Based on similarities between eukaryotic eIF-2gamma proteins and eubacterial EF-Tu proteins, we previously proposed a major role for the gamma-subunit in binding guanine nucleotide and tRNA. We have tested this hypothesis by examining the biochemical activities of yeast eIF-2 purified from wild-type strains and strains harboring mutations in the eIF-2gamma structural gene (GCD11) predicted to alter ligand binding by eIF-2. The alteration of tyrosine 142 in yeast eIF-2gamma, corresponding to histidine 66 in Escherichia coli EF-Tu, dramatically reduced the affinity of eIF-2 for Met-tRNAi(Met) without affecting the k(off) value for guanine nucleotides. In contrast, non-lethal substitutions at a conserved lysine residue (K250) in the putative guanine ring-binding loop increased the off-rate for GDP, thereby mimicking the function of the guanine nucleotide exchange factor eIF-2B, without altering the apparent dissociation constant for Met-tRNAi(Met). For eIF-2[gamma-K250R], the increased off-rate also seen for GTP was masked by the presence of Met-tRNAi(Met) in vitro. In vivo, increasing the dose of the yeast initiator tRNA gene suppressed the slow-growth phenotype and reduced GCN4 expression in gcd11-K250R and gcd11-Y142H strains. These studies indicate that the gamma-subunit of eIF-2 does indeed provide EF-Tu-like function to the eIF-2 complex, and further suggest that the level of Met-tRNAi(Met) is critical for maintaining wild-type rates of initiation in vivo.  相似文献   

2.
The eukaryotic protein synthesis initiation factor, eIF-2B, is a multimeric protein of five different subunits termed alpha, beta, gamma, delta and epsilon, which facilitates recycling of a further factor, eIF-2, and is an important control point in the initiation process. In order to investigate the structure and function of eIF-2B, monoclonal antibodies have been prepared to the beta, delta and epsilon subunits of the factor from rabbit reticulocytes. All three antibodies are active in Western blotting, ELISA and immunoprecipitation. The anti-epsilon antibody inhibits both the guanine nucleotide exchange activity of eIF-2B and protein synthesis in the rabbit reticulocyte lysate at the level of initiation. The other two antibodies do not inhibit either guanine nucleotide exchange or protein synthesis. The monoclonal antibodies and a polyclonal anti-(rabbit reticulocyte eIF-2B) serum were used to investigate the subunit size and the antigenic structure of eIF-2B from a variety of rabbit tissues and from a variety of mammalian species. eIF-2B from all rabbit tissues tested was indistinguishable from that prepared from rabbit reticulocytes. Quantitative studies showed substantial variation in the relative concentrations of eIF-2 and eIF-2B between different rabbit tissues. Marked variation in both the sizes of the subunits and their reaction with the antibodies was observed between eIF-2B from rabbit, rat, guinea pig and man.  相似文献   

3.
As the amount of available sequence data increases, it becomes apparent that our understanding of translation initiation is far from comprehensive and that prior conclusions concerning the origin of the process are wrong. Contrary to earlier conclusions, key elements of translation initiation originated at the Universal Ancestor stage, for homologous counterparts exist in all three primary taxa. Herein, we explore the evolutionary relationships among the components of bacterial initiation factor 2 (IF-2) and eukaryotic IF-2 (eIF-2)/eIF-2B, i.e., the initiation factors involved in introducing the initiator tRNA into the translation mechanism and performing the first step in the peptide chain elongation cycle. All Archaea appear to posses a fully functional eIF-2 molecule, but they lack the associated GTP recycling function, eIF-2B (a five-subunit molecule). Yet, the Archaea do posses members of the gene family defined by the (related) eIF-2B subunits alpha, beta, and delta, although these are not specifically related to any of the three eukaryotic subunits. Additional members of this family also occur in some (but by no means all) Bacteria and even in some eukaryotes. The functional significance of the other members of this family is unclear and requires experimental resolution. Similarly, the occurrence of bacterial IF-2-like molecules in all Archaea and in some eukaryotes further complicates the picture of translation initiation. Overall, these data lend further support to the suggestion that the rudiments of translation initiation were present at the Universal Ancestor stage.  相似文献   

4.
We have isolated and characterized two suppressor genes, SUI4 and SUI5, that can initiate translation in the absence of an AUG start codon at the HIS4 locus in Saccharomyces cerevisiae. Both suppressor genes are dominant in diploid cells and lethal in haploid cells. The SUI4 suppressor gene is identical to the GCD11 gene, which encodes the gamma subunit of the eIF-2 complex and contains a mutation in the G2 motif, one of the four signature motifs that characterizes this subunit to be a G-protein. The SUI5 suppressor gene is identical to the TIF5 gene that encodes eIF-5, a translation initiation factor known to stimulate the hydrolysis of GTP bound to eIF-2 as part of the 43S preinitiation complex. Purified mutant eIF-5 is more active in stimulating GTP hydrolysis in vitro than wild-type eIF-5, suggesting that an alteration of the hydrolysis rate of GTP bound to the 43S preinitiation complex during ribosomal scanning allows translation initiation at a non-AUG codon. Purified mutant eIF-2gamma complex is defective in ternary complex formation and this defect correlates with a higher rate of dissociation from charged initiator-tRNA in the absence of GTP hydrolysis. Biochemical characterization of SUI3 suppressor alleles that encode mutant forms of the beta subunit of eIF-2 revealed that these mutant eIF-2 complexes have a higher intrinsic rate of GTP hydrolysis, which is eIF-5 independent. All of these biochemical defects result in initiation at a UUG codon at the his4 gene in yeast. These studies in light of other analyses indicate that GTP hydrolysis that leads to dissociation of eIF-2 x GDP from the initiator-tRNA in the 43S preinitiation complex serves as a checkpoint for a 3-bp codon/anticodon interaction between the AUG start codon and the initiator-tRNA during the ribosomal scanning process.  相似文献   

5.
Eukaryotic initiation factor (eIF)-2B, the guanine nucleotide exchange factor for eIF-2, consists of five distinct subunits in both mammals and the yeast Saccharomyces cerevisiae. The exchange reaction mediated by eIF-2B can be regulated by phosphorylation of eIF-2 on its alpha-subunit. This represents a key control point in the initiation of translation. The functions of the individual subunits of the eIF-2B complex remain unclear. Mutational analysis in Saccharomyces cerevisiae suggested that the smallest subunit (the alpha) is dispensable for exchange, but required for the inhibition of eIF-2B by eIF-2(alphaP). Here we present evidence that, in mammalian cells, eIF-2Balpha is essential for the activity of the complex, since preparations of eIF-2B lacking this subunit are not active in nucleotide exchange in vitro, although the complex still contains the beta, gamma, delta and epsilon subunits.  相似文献   

6.
Eukaryotic translation initiation factor 2 (eIF-2) is a heterotrimer composed of three subunits designated alpha, beta, and gamma. These proteins exist in equimolar amounts in the cell and have not been detected as isolated subunits. Our research examines the basis of their balanced synthesis. Northern analysis of K562 cell mRNA revealed that eIF-2 beta was five times more abundant than eIF-2 alpha. However, immunoprecipitation of pulse-labeled K562 cells showed an equimolar rate of synthesis of eIF-2 alpha and -beta despite the 5-fold difference in the size of their mRNA pools. Addition of equal amounts of synthetic capped mRNA for eIF-2 alpha and eIF-2 beta to an in vitro translation reaction produced five times more eIF-2 alpha protein than eIF-2 beta. Determination of the polysome profile for alpha and beta mRNA in K562 cells indicated eIF-2 alpha was translated more efficiently than eIF-2 beta. Substitution of either the initiation codon context or the leader of the beta mRNA for that of alpha had only a minor effect on the translational efficiency of beta. Comparison of the rate of ribosomal elongation for the two mRNAs indicated that ribosomes associated with the beta mRNA elongate at a rate 4-fold less than that of eIF-2 alpha. Thus, the balanced translation of alpha and beta mRNA is primarily the result of a 4-fold difference in the rate of ribosomal elongation.  相似文献   

7.
Eukaryotic initiation factor 2 (eIF-2) is a heterotrimeric protein with subunits alpha, beta and gamma that forms a ternary complex with Met-tRNA and GTP. It promotes the binding of Met-tRNA to ribosomes and controls translational rates via phosphorylation/dephosphorylation mechanisms. By means of immunofluorescence and post-embedding immunocytochemistry of intact cells and quantitative immunoblotting of cell extracts, the cellular distribution of the initiation factor has been examined in primary neuronal cultures as well as in two established cell lines: PC12 phaeochromocytoma cells and rat pituitary GH4C1 cells. Our results indicated that the initiation factor is located not only in the cytoplasm but also in the nuclei of the cultured neurons and cell lines. In the cytoplasm, immunocytochemical studies reveal that the factor is present mainly in those areas that are rich in ribosomes. In the nucleus, the immunolabelling of eukaryotic initiation factor 2 verified the presence of gold particles in both nucleolar and extranucleolar areas. The specific distribution of this factor on both sides of the nuclear envelope suggests that it might have some nuclear-related function(s) besides its already known role in the control of translation.  相似文献   

8.
A factor isolated from the human tonsillar ribosomal wash specifically stimulated the poly (U)-dependent binding of Phe-tRNA to 40S subunits at low Mg2+ concentration and without any requirement for GTP. The stimulated binding of Phe-tRNA to 40S particles was inhibited in proportion to added deacylated tRNA. The factor was inactivated by N-ethylmaleimide, but in the presence of 40S subunits a considerable protection was observed. 40S subunits, incubated with the factor and isolated by centrifugation, carried significant factor activity. The results imply that the human tonsillar factor, which shows a great functional analogy to the eucaryotic initiation factor 1 from other sources, exerts its effect by an initial interaction with the 40S subunit.  相似文献   

9.
The rate of initiation of protein synthesis in rabbit reticulocyte lysates is regulated by a translational inhibitor protein which is activated in the absence of added haemin. The effects of this inhibitor on amino acid incorporation are overcome by the protein synthesis initiation factor IF-MP which binds Met-tRNAf in a ternary complex with GTP and which can transfer this complex to small ribosomal subunits. Addition of this factor to haemin-deficient lysates prevents loss of polysomes and regenerates polysomes from 80-S single ribosomes, thus confirming an effect at the level of polypeptide initiation. The ability of the initiation factor to overcome the effects of various concentrations of the translational inhibitor suggests that the inhibitor inactivates the factor catalytically rather than stoichiometrically. In a system in vitro consisting of salt-washed 40-S ribosomal subunits, initiator Met-tRNAf and GTP, the initiation factor IF-MP transfers Met-tRNAf to the subunits in the absence of any other factor or mRNA. Equilibrium buoyant density gradient analysis in CsCl shows that formaldehyde-fixed subunits carrying Met-tRNAf bound under these conditions have a buoyant density approximately 0.02 g/cm3 lower than the bulk of salt-washed subunits, suggesting that approximately 100000 daltons of additional protein are associated with these subunits. This is in marked contrast to the amounts of protein bound to subunits incubated with Met-tRNAf and GTP in the presence of a crude ribosomal salt-wash fraction. The translational inhibitor has no effect on formation of the ternary complex IF-MP-Met-tRNAf-GTP but does impair the factor-catalysed transfer of Met-tRNAf to washed subunits. The possible mechanisms of action of the inhibitor on polypeptide chain initiation are reviewed in the light of these results.  相似文献   

10.
GTP-binding protein/transglutaminases (tissue transglutaminases or TGases) have been implicated in a variety of cellular processes including retinoic acid (RA)-induced apoptosis. Recently, we have shown that RA activates TGases as reflected by stimulated GTP binding, increased membrane association, and stimulated phosphoinositide lipid turnover. This prompted us to search for cellular proteins that bind TGases in a RA-stimulated manner. In this report, we show that the eukaryotic initiation factor (eIF-5A), a protein that is essential for cell viability, perhaps through effects on protein synthesis and/or RNA export, associates with the TGase in vivo. The interaction between eIF-5A and TGase is specific for the GDP-bound form of the TGase and is not detected when the TGase is pre-loaded with GTP gamma S. The TGase-eIF-5A interaction also is promoted by Ca2+, Mg2+, and RA treatment of HeLa cells. In the presence of retinoic acid, millimolar levels of Ca2+ are no longer required for the TGase-eIF-5A interaction. Nocodazole treatment, which blocks the cell cycle at mitosis (M phase), strongly inhibits the interaction between eIF-5A and cytosolic TGase. The interaction between TGase and eIF-5A and its sensitivity to the nucleotide-occupied state of the TGase provides a potentially interesting connection between RA signaling and protein synthesis and/or RNA trafficking activities.  相似文献   

11.
Severe muscle wasting is a characteristic feature of sepsis. We have previously established that the rate of protein synthesis in muscles composed of fast-twitch fibers is severely diminished in response to sepsis. The present studies investigate the biochemical reactions responsible for the decreased rate of protein synthesis using gastrocnemius from control and septic rats perfused in situ. Analysis of free ribosomal subunits indicated peptide-chain initiation was impaired by infection. To characterize biochemical reactions in the pathway of peptide-chain initiation affected, the effect of sepsis on the incorporation of initiator [35S]methionyl-tRNA (met-tRNA(imet)) into the 40S initiation complex was examined. Sepsis caused a 65% decrease in the binding of radiolabelled met-tRNA(imet) to the 40S initiation complex compared with controls. The binding of met-tRNA(met) to the 40S ribosome is regulated by eukaryotic initiation factor eIF-2B, whose activity can be modulated in part by the redox state of pyridine dinucleotides. The mean cytoplasmic NADH/NAD+ ratio was increased 2 fold in sepsis, while the NADPH/NADP+ ratio was unchanged. These findings identify the formation of the 40S initiation complex as a defect in the protein synthesis machinery during sepsis. The decreased formation of the 40S initiation complex in muscle could not be explained by changes in the cytoplasmic redox state.  相似文献   

12.
Eukaryotic initiation factor-2B (eIF-2B) is a guanine nucleotide exchange factor (GEF) that plays a key role in the regulation of protein synthesis. In this study, we have used the baculovirus-infected Sf9 insect cell system to express and characterize the five dissimilar subunits of rat eIF-2B. GEF activity was detected in extracts of Sf9 cells expressing the epsilon-subunit alone and was greatly increased when all five subunits were coexpressed. In addition, high GEF activity was observed in extracts containing a four-subunit complex lacking the alpha-subunit. Assembly of an eIF-2B holoprotein was confirmed by coimmunoprecipitation of all five subunits. Gel filtration chromatography revealed that recombinant eIF-2B had the same molecular mass as eIF-2B purified from rat liver and that it did indeed possess GEF activity. Phosphorylation of the substrate eIF-2 inhibited the GEF activity of the five-subunit eIF-2B; this inhibition required the eIF-2B alpha-subunit. The results demonstrate that eIF-2Balpha functions as a regulatory subunit that is not required for GEF activity, but instead mediates the regulation of eIF-2B by substrate phosphorylation. Furthermore, eIF-2Bepsilon is necessary and is perhaps sufficient for GEF activity in vitro.  相似文献   

13.
A eukaryotic translation initiation factor 2 (eIF-2)-associated 67 kDa glycoprotein (p67) protects the eIF-2 alpha-subunit from inhibitory phosphorylation by eIF-2 kinases, and this promotes protein synthesis in the presence of active eIF-2 alpha kinases in vitro [Ray, M. K., et al. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 539-543]. We have now examined the effect of overexpression of this cellular eIF-2 kinase inhibitor in an in vivo system using transiently transfected COS-l cells. In this system, coexpression of genes that inhibit PKR activity restores translation of plasmid-derived mRNA. We now report the following. (1) Transient transfection of COS-1 cells with a p67 expression vector increased p67 synthesis by 20-fold over endogenous levels in the isolated subpopulation of transfected cells. (2) Cotransfection of p67 cDNA increased translation of plasmid-derived mRNAs. (3) Overexpression of p67 reduced phosphorylation of coexpressed eIF-2 alpha. (4) p67 synthesis was inhibited by cotransfection with an eIF-2 alpha mutant S51D, a mutant that mimics phosphorylated eIF-2 alpha, indicating that p67 cannot bypass translational inhibition mediated by phosphorylation of the eIF-2 alpha-subunit. These results show that the cellular protein p67 can reverse PKR-mediated translational inhibition in intact cells.  相似文献   

14.
A population of free, native ribosomal 40S subunits, that do not react with 60S subunits to form 80S ribosomes, has been identified in the postmicrosomal fraction of rat liver homogenates. A protein (IF-3) has been purified from high salt (0.88 M KCI) extracts of native 40S subunits by gradient centrifugation and by ammonium sulfate fractionation; it prevents the reassociation of subunits and to a limited extent dissociates ribosomes to subunits. The activity is measured by ultracentrifugation of the reaction products on linear sucrose gradients, or with an assay developed in this laboratory that couples dissociation with the 60S-specific peptidyltransferase reaction; the latter procedure measures the amount of 60S subunits released from ribosomes or remaining in incubations in the presence of IF-3. Dissociation factor activity is recovered from most of the particles that are resolved by zonal centrifugation of the total "native subunits" obtained from the postmicrosomal fraction; the highest concentration of IF-3, however, appears to be associated with native 40S subunits. The purified dissociation factor IF-3 is composed of about ten polypeptides and the molecular weight is estimated to be between 500 000 and 700 000, on the basis of glycerol and cesium chloride gradient centrifugation. When purified 40S subunits react with IF-3 or when 80S ribosomes are dissociated by IF-3, a product is formed which is dependent on the concentration of the protein factor and has the characteristics of a 40SIF-3 complex; centrifugation of the complex on sucrose and cesium chloride gradients suggests that the complex consists of 1 equiv of each of the two components. Although dissociation factor IF-3 appears to react in a specific manner with free or ribosome-associated 40S subunits, the reaction with subunits differs in several respects from that with ribosomes. The dissociation factor also appears to interact with 60S subunits but multiple complexes are formed, some with more than 1 IF-3 equiv per 60S particle. The IF-3 converts 40S dimers (55S particles) to the 40S-IF-3 complex and dissociates free, native 80S particles present in the postmicrosomal fraction, but it does not affect polysome-associated ribosomes engaged in protein synthesis.  相似文献   

15.
An important aspect of the regulation of gene expression is the modulation of translation rates in response to growth factors, hormones and mitogens. Most of this control is at the level of translation initiation. Recent studies have implicated the MAP kinase pathway in the regulation of translation by insulin and growth factors. MAP kinase phosphorylates a repressor of translation initiation [4E-binding protein (BP) 1] that binds to the mRNA 5' cap binding protein eukaryotic initiation factor (eIF)-4E and inhibits cap-dependent translation. Phosphorylation of the repressor decreases its affinity for eIF-4E, and thus relieves translational inhibition. eIF-4E forms a complex with two other polypeptides, eIF-4A and p220, that promote 40S ribosome binding to mRNA. Here, we have studied the mechanism by which 4E-BP1 inhibits translation. We show that 4E-BP1 inhibits 48S pre-initiation complex formation. Furthermore, we demonstrate that 4E-BP1 competes with p220 for binding to eIF-4E. Mutants of 4E-BP1 that are deficient in their binding to eIF-4E do not inhibit the interaction between p220 and eIF-4E, and do not repress translation. Thus, translational control by growth factors, insulin and mitogens is affected by changes in the relative affinities of 4E-BP1 and p220 for eIF-4E.  相似文献   

16.
The coupling of receptors to heterotrimeric G proteins is determined by interactions between the receptor and the G protein alpha subunits and by the composition of the betagamma dimers. To determine the role of the gamma subunit prenyl modification in this interaction, the CaaX motifs in the gamma1 and gamma2 subunits were altered to direct modification with different prenyl groups, recombinant betagamma dimers expressed in the baculovirus/Sf9 insect cell system, and the dimers purified. The activity of the betagamma dimers was compared in two assays: formation of the high affinity agonist binding conformation of the A1 adenosine receptor and receptor-catalyzed exchange of GDP for GTP on the alpha subunit. The beta1gamma1 dimer (modified with farnesyl) was significantly less effective than beta1gamma2 (modified with geranylgeranyl) in either assay. The beta1gamma1-S74L dimer (modified with geranylgeranyl) was nearly as effective as beta1gamma2 in either assay. The beta1gamma2-L71S dimer (modified with farnesyl) was significantly less active than beta1gamma2. Using 125I-labeled betagamma subunits, it was determined that native and altered betagamma dimers reconstituted equally well into Sf9 membranes containing A1 adenosine receptors. These data suggest that the prenyl group on the gamma subunit is an important determinant of the interaction between receptors and G protein gamma subunits.  相似文献   

17.
Members of the beta isozyme subfamily of phosphatidylinositol-specific phospholipase C (PLC) are stimulated by alpha subunits and betagamma dimers of heterotrimeric guanine-nucleotide-binding proteins (G proteins). Myeloid differentiated human HL-60 granulocytes and bovine neutrophils contain a soluble phospholipase C, which is stimulated by the metabolically stable GTP analogue guanosine (5'-->O)-3-thiotriphosphate (GTP[S]). To identify the component(s) involved in mediating this stimulation, the relevant polypeptide(s) was resolved from endogenous phospholipase C and purified from bovine neutrophil cytosol by measuring its ability to confer GTP[S] stimulation to exogenous recombinant PLCbeta2. The resolved factor, which behaved as 48-kDa protein upon gel filtration, stimulated PLCbeta2 but not PLCbeta1 or PLCdelta1. Activation of phosphatidylinositol 4-phosphate 5-kinase was not involved in this stimulation. The purified stimulatory factor consisted of two polypeptides of molecular masses of approximately 23 kDa and 26 kDa. The protein stimulated a deletion mutant of PLCbeta2 that lacked a carboxyl-terminal region necessary for stimulation by members of the alpha(q) subfamily of the G-protein alpha subunits. The results of this study suggest that a GTP-binding protein distinct from alpha(q) subunits, probably a low-molecular-mass GTP-binding protein associated with a regulatory protein, is involved in isozyme-specific activation of PLCbeta2.  相似文献   

18.
Phosphorylation of eIF-2 alpha in Saccharomyces cerevisiae by the protein kinase GCN2 leads to inhibition of general translation initiation and a specific increase in translation of GCN4 mRNA. We isolated mutations in the eIF-2 alpha structural gene that do not affect the growth rate of wild-type yeast but which suppress the toxic effects of eIF-2 alpha hyperphosphorylation catalyzed by mutationally activated forms of GCN2. These eIF-2 alpha mutations also impair translational derepression of GCN4 in strains expressing wild-type GCN2 protein. All four mutations alter single amino acids within 40 residues of the phosphorylation site in eIF-2 alpha; however, three alleles do not decrease the level of eIF-2 alpha phosphorylation. We propose that these mutations alter the interaction between eIF-2 and its recycling factor eukaryotic translation initiation factor 2B (eIF-2B) in a way that diminishes the inhibitory effect of phosphorylated eIF-2 on the essential function of eIF-2B in translation initiation. These mutations may identify a region in eIF-2 alpha that participates directly in a physical interaction with the GCN3 subunit of eIF-2B.  相似文献   

19.
Most eukaryotic mRNAs contain a 5' cap (m7GppX) and a 3' poly(A) tail to increase synergistically the translational efficiency. Recently, the poly(A) binding protein (PABP) and cap-binding protein, eIF-4F, were found to interact [Le et al. (1997) J. Biol. Chem. 272, 16247-16255; Tarun and Sachs (1996) EMBO J. 15, 7168-7177]. These data suggest that PABP may exert its effect on translational efficiency either by increasing the formation of initiation factor-mRNA complex or by enhancing ribosome recycling. To investigate the functional consequences of these interactions, the fluorescent cap analogue, ant-m7GTP, which is an environmentally sensitive fluorescent probe [Ren and Goss (1996) Nucleic Acids Res. 24, 3629-3634] was used to investigate the cap-binding affinity. Our data show that the binding of eIF-(iso)4F or eIF-4F to cap analogue enhanced their binding affinity toward PABP approximately 40-fold. Similarly, the eIF-4F/PABP or eIF-(iso)4F/PABP complexes show a 40-fold enhancement of cap analogue binding as compared to eIF-4F or eIF-(iso)4F alone. At least part of the enhancement of the translational initiation by PABP can be accounted for by direct changes in cap-binding affinity. The interactions of these components also suggest a mechanism whereby the poly(A) tail is brought into close proximity with m7G cap. This effect was examined by fluorescence energy transfer, and it was determined that the PABP/eIF-4F complex could bind both poly(A) and 5' cap simultaneously.  相似文献   

20.
Stimulation of protein synthesis in response to insulin is concomitant with increased phosphorylation of initiation factors 4B and 4G and ribosomal protein S6 (Morley, S. J., and Traugh, J. A. (1993) Biochimie 75, 985-989) and is due at least in part to multipotential S6 kinase. When elongation factor 1 (EF-1) from rabbit reticulocytes was examined as substrate for multipotential S6 kinase, up to 1 mol/mol of phosphate was incorporated into the alpha, beta, and delta subunits. Phosphorylation of EF-1 resulted in a 2-2. 6-fold stimulation of EF-1 activity, as measured by poly(U)-directed polyphenylalanine synthesis. The rate of elongation was also stimulated by approximately 2-fold with 80 S ribosomes phosphorylated on S6 by multipotential S6 kinase. When the rates of elongation in extracts from serum-fed 3T3-L1 cells and cells serum-deprived for 1.5 h were compared, a 40% decrease was observed upon serum deprivation. The addition of insulin to serum-deprived cells for 15 min stimulated elongation to a rate equivalent to that of serum-fed cells. Similar results were obtained with partially purified EF-1, with both EF-1 and ribosomes contributing to stimulation of elongation. These data are consistent with a ribosomal transit time of 3.2 min for serum-deprived cells and 1.6 min following the addition of insulin for 15 min. Taken together, the data suggest that insulin stimulation involves coordinate regulation of EF-1 and ribosomes through phosphorylation by multipotential S6 kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号