首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The results of the theoretical thermodynamic analysis and the dynamic behaviour of the solar heating system of a thermochemical refrigerator, which operates on a heterogeneous solid–gas reaction between barium chloride and ammonia, are presented in this work. The thermodynamic analysis of the barium chloride–ammonia system shows that after energy and mass balance, the global efficiency coefficient (COP) varies very little. The theoretical relative low temperatures of dissociation in this system which are between 50°C and 60°C need simple heating systems such as flat plate collectors are needed, with an advantage over traditional liquid/vapour absorption systems. A simulation of the annual dynamic behaviour of the solar heating system for the operation of a solid-gas reactor is also presented. For an ice production specific cooling load, calculations are made of the different solar fractions of different areas of solar caption as well as the monthly variations of the efficiencies of the refrigeration systems.  相似文献   

2.
为了研究太阳能蓄能制冷过程中各工作参数随时间变化的关系,建立直接加热溶液的太阳集热器和蓄能制冷系统的动态数学模型,利用计算机进行动态数值模拟,得到太阳集热器与溶液储罐环路内工作溶液循环和蓄能制冷循环特性。  相似文献   

3.
王莹  庞云凤  殷刚 《节能技术》2010,28(1):47-50,55
本文在介绍了太阳能半导体制冷的原理及系统结构的基础上,对影响太阳能半导体制冷性能的主要因素进行了系统分析,主要有太阳辐射强度和电池板的光电转换效率、材料的优值系数、电臂的优化结构设计、热端强化散热以及半导体最优工况。其中半导体材料的优值系数和半导体制冷热端散热这两个因素是影响太阳能半导体制冷性能的关键因素。从优值系数方面讲,可以通过半导体材料的性能改进及其加工、制造工艺的完善提高优值系数,从而提高半导体制冷性能。而寻找合理的半导体制冷热端散热方式对制冷性能也有着很重要的影响,随着散热强度的不断增强,半导体制冷的性能有所提高,但最终趋于恒定。  相似文献   

4.
太阳能喷射式制冷系统在满足供冷需求时,通常需要补充一定量的一次常规能源,其节能条件及应用范围是急需解决的问题.在系统能量平衡的基础上,引入太阳能倍率等参数,推导了太阳能喷射式制冷系统与电压缩制冷系统的一次能耗比计算公式,进而对太阳能喷射式制冷系统与电压缩制冷系统的一次能源消耗进行了对比分析.并以太原为例,确定了太阳能喷射式制冷系统的平衡太阳能倍率,给出了相对于电压缩制冷的太阳能喷射式制冷的节能条件.  相似文献   

5.
In recent years, more and more attention has been paid on the application potential of solar cooling for buildings. Due to the fact that the efficiency of solar collectors is generally low at the time being, the effectiveness of solar cooling would be closely related to the availability of solar irradiation, climatic conditions and geographical location of a place. In this paper, five types of solar cooling systems were involved in a comparative study for subtropical city, which is commonly featured with long hot and humid summer. The solar cooling systems included the solar electric compression refrigeration, solar mechanical compression refrigeration, solar absorption refrigeration, solar adsorption refrigeration and solar solid desiccant cooling. Component-based simulation models of these systems were developed, and their performances were evaluated throughout a year. The key performance indicators are solar fraction, coefficient of performance, solar thermal gain, and primary energy consumption. In addition, different installation strategies and types of solar collectors were compared for each kind of solar cooling system. Through this comparative study, it was found that solar electric compression refrigeration and solar absorption refrigeration had the highest energy saving potential in the subtropical Hong Kong. The former is to make use of the solar electric gain, while the latter is to adopt the solar thermal gain. These two solar cooling systems would have even better performances through the continual advancement of the solar collectors. It will provide a promising application potential of solar cooling for buildings in the subtropical region.  相似文献   

6.
Fei Wang  Shengqiang Shen 《Solar Energy》2009,83(12):2186-2194
A novel solar bi-ejector refrigeration system was investigated, whose difference compared to the traditional system is that the circulation pump is replaced by a thermal injector. The new system works more stably and needs less maintenance work than the old one, and the whole system can more fully utilize the solar energy. The mathematical models for calculating the performance of the injector and the whole solar refrigeration system were established. The pressure rise performance of injector under different structure and operation parameters and the performance of solar bi-ejector refrigeration system were studied with R123. The results show that the discharged pressure of injector is affected by structure dimensions of injector and operation conditions. With increasing generation temperature, the entrainment ratio of ejector becomes better while that of injector becomes worse and the overall thermal efficiency of the solar bi-ejector refrigeration system first increases and then decreases with an optimum value of 0.132 at generation temperature of 105 °C, condensation temperature of 35 °C and evaporation temperature of 10 °C.  相似文献   

7.
A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual primary energy consumption of the solar hybrid cooling system was lower than that of the conventional vapour compression refrigeration system up to 36.5%. Between the two options of chilled ceilings, the passive chilled beams were more energy-efficient to work with the solar hybrid cooling system in the hot and humid climate. Harnessing solar energy for driving air-conditioning would help in reducing the carbon emission, hence alleviating the climate change.  相似文献   

8.
This paper presents an investigation of an ammonia-water absorption cycle for solar refrigeration, airconditioning and heat pump operations at higher heat supply temperatures. The system consists of a solar driven generator, rectifier, condenser, evaporator, absorber and heat exchangers for preheating and subcooling within the system. A steady state thermodynamic cycle analysis based on mass and heat balances along with the state equations for the thermodynamic properties of the ammonia-water mixture has been carried out. A numerical computer simulation of the system with input component temperatures, refrigerant concentration/mass flow rate and effectiveness of the heat exchangers has been made to evaluate the relative heat transfer rates (i.e. coefficients of performance) and the mass flow rates for the cooling/heating modes. It is found that unlike the low generator temperature behaviour the coefficients of performance for both cooling and heating modes are reduced at higher generator temperatures. However, an increase of condenser temperature for each mode of operation improves the performance of the systems at higher generator temperatures. A choice for keeping the absorber temperature equal to/lower than that of the condenser is also predicted at lower/higher generator temperatures, respectively. In general the results are more pronounced for the refrigeration mode than for the heat pump mode and are least effective for the airconditioning mode.  相似文献   

9.
新型太阳能喷射与电压缩联合制冷系统研究   总被引:4,自引:1,他引:4  
为提高太阳能与辅助能源的综合利用率,提出了一种新型的太阳能喷射式与电压缩式有机结合为一体的联合制冷系统,进而对这种新型联合系统及传统联合系统进行了热力学对比分析,对联合系统太阳能喷射式制冷时最佳发生温度进行了选择,并计算了典型年气象条件下两种联合系统相对于电压缩制冷系统的节能量及节能率。结果表明:两种联合系统相对于电压缩式制冷系统而言都是节能的,但新型联合制冷系统比传统联合制冷系统更节能,更能高效地综合利用太阳能与常规能源:在文中计算条件下,新型联合系统比传统联合系统多节能13.6%。  相似文献   

10.
新型平板式太阳能冷热联供装置   总被引:2,自引:0,他引:2  
在积累了太阳固体吸附式制冷循环研究的基础上,与现有的平板式太阳热水器制造技术紧密结合,提出了平板式太阳冷热联供循环方式,并在实验室内成功地制作了实物样机。该装置能有效地回收太阳固体吸附式制冷不中吸附床的显热及吸附热,且操作简便。实验结果有效地支持了所提出的设想,为太阳固体吸附式制冷的实用化应用打下了良好基础。  相似文献   

11.
以能源平均成本和动态投资回收期为经济性指标,对采用平板集热器、真空管集热器、复合抛物面集热器和槽式集热器驱动的太阳能单效溴化锂吸收式制冷系统进行了对比分析,同时以?效率和动态投资回收期为目标对优选的太阳能制冷系统进行了多目标优化。结果表明:采用真空管集热器的太阳能制冷系统的能源平均成本最低及动态投资回收期最短;发生器热水进口温度存在最优值使得系统?效率最高,能源平均成本最低;增加系统装机容量可有效降低系统的能源平均成本并且缩短投资回收期;太阳辐照强度越大,太阳能制冷系统的能源平均成本越低及投资回收期越短。此外,多目标优化结果表明发生器热水进口温度存在最优值可使得综合目标函数取得最小值。  相似文献   

12.
太阳能喷射式制冷系统性能分析   总被引:14,自引:2,他引:14  
叙述了太阳能增压喷射式制冷的原理和系统工作过程. 探讨了太阳能喷射式制冷系统研究的进展状况.通过计算研究了多种制冷剂对喷射器工作性能和系统制冷系数的影响.应用数学模拟的方法,分析了太阳能增压喷射式制冷系统在实际日照条件下的工作性能.结果表明,这种系统能够利用太阳能提供实际需要的制冷量.  相似文献   

13.
Solar water heating systems are widely used in Brazil for domestic purposes in single-family households. The exploitation of the potential energy of the water from the upper tank and the thermosyphon phenomena for hot water circulation constitutes the absolute majority of the residential solar water heating systems in the country. But, these water heating systems are usually sized according to tables provided by the manufacturers, which show the number of plates required based on the size of the family and the number of hot water outlets. This sizing is based much more on intuition rather than on scientific data. For that reason, this work has developed an optimization model for water heating systems design parameters, using a numerical simulation routine, in a long-term transient regime. The optimized design gives the slope and area of the flat plate collector, which results in the minimum cost over the equipment life cycle. The computing procedure was executed considering specific characteristics of the project. A thermosyphon solar water heating system with flat-plate collector for Sao Paulo's climate was simulated. The practice of Brazilian designers and manufacturers is to recommend the maximization of the energetic gain for the winter. This paper has analyzed in economic terms if it is more attractive to increase the gain of solar energy in the winter period, with the consequence of reduction of the solar energy gain along the year, or to adopt the adequate slope, which improves the yearly solar energy gain.  相似文献   

14.
A solar refrigerator is made of a solar collector and a refrigeration system. Real solar refrigerators usually operate between two limits, maximum coefficient of performance (COP) and maximum cooling load. A new model is presented to describe an irreversible absorption refrigerator, in which not only the irreversibilities of heat conduction but also those resulting from friction, eddy and other irreversible effects inside the working fluid are considered. The influence of these irreversible effects on the performance of an absorption refrigerator with continuous flow is investigated. The analytical expressions of the optimal refrigeration coefficient and the cooling rate of the refrigerator are derived. The predictions of the model are compared with semi-empirical cycle model of single-stage absorption refrigeration machines. The results obtained here can describe the optimal performance of a four temperature level absorption refrigeration affected simultaneously by the internal and external irreversibilities and provide the theoretical bases for the optimal design and operation of real absorption refrigerators operating between four temperature levels.  相似文献   

15.
提出一种新型的太阳能喷射与电压缩联合制冷系统,其既可以利用太阳能喷射式制冷又可以利用电能驱动压缩式制冷,可提高太阳能与辅助能源的综合利用率。对该系统中以R141b作为制冷工质,采用斜盘式压缩机的辅助电压缩制冷系统进行了理论循环计算与实验研究。实验表明,该辅助电压缩制冷系统的性能系数达到2.53。与传统的辅助能源应用方式相比,该辅助电压缩式制冷系统能更高效地利用常规能源,提高新型太阳能喷射制冷系统的综合节能效果。  相似文献   

16.
This paper describes a parametric improvement study of a solar adsorption refrigerator, using a flat plate collector with silica-gel and water as the adsorption pair. Based on a set of experimental results obtained with a prototype, used mainly for model validation purposes, a numerical study is conducted to determine the influence of the most relevant parameters and to improve the overall performance.The main parameters considered in this study are: the mass of silica-gel, the number of metallic fins in the silica-gel bed, the orientation of the solar collector (azimuth angle), the improvement of the collector's cooling during the night, the thermal contact resistance between silica-gel and the collector plate, the condenser surface area, the evaporation surface area, the radiant properties of the collector plate, and the thermal insulation of the refrigerated cabinet. The influence of each individual parameter is analyzed, and its optimum value is determined. The refrigeration system with all the individually obtained optimum parameters has an overall performance considerably higher than that corresponding to the analyzed prototype, providing useful information for a better integrated understanding of the solar adsorption refrigeration systems, and for a better design of such systems looking for their maximum overall performance.  相似文献   

17.
As a simple and practical bioclimatic design methodology, solar chimneys are receiving considerable attention for reducing heat gain and inducing natural cooling or heating in both commercial and residential buildings because of their potential benefits in terms of operational cost, energy requirement and carbon dioxide emission. In practical civil buildings, solar chimneys can be installed on the walls and roofs. For the purpose of improving natural ventilation performance and achieving better indoor thermal comfort, solar chimneys are always applied in the form of integrated configurations. Solar chimneys can also be used to combine with natural cooling systems so as to enhance the cooling effect inside buildings. Besides, active solar systems may be utilized to enhance the ventilation performance of solar chimneys. In this paper, the main configurations and the integrated renewable energy systems based on solar chimneys were summarized. Then the suggestions were given. Generally, solar chimney technology has been regarded as an effective and economical design method in low carbon buildings. As for the integrated energy systems based upon solar chimneys, it is still necessary to carry out more experimental investigations to acquire objective data for the system design. Besides, it is suggested to further study the optimization and control strategy of such integrated systems in different climates.  相似文献   

18.
固休整有附式制冷技术及其研究进展   总被引:5,自引:0,他引:5  
固体吸附式制冷技术是一种能有效利用太阳能及工业余热的对环境无不新型制冷技术,对固体吸附制冷技术的发展历程及研究现状进行了一定 总结,对固体吸附制冷技术近两年的一些研究热点及其产业化进行了分析。  相似文献   

19.
In this study a novel design methodology for household refrigeration systems focused on both energy savings and cost reduction is presented and evaluated. Mathematical models were put forward for each of the system components and used to simulate the energy performance of the entire refrigeration system. The system simulation model was validated against experimental data obtained for a single-door 300-l vertical freezer. It was found that the model predictions for the energy consumption, cooling capacity and runtime ratio deviated from the experimental data within an error band of ±10%. An optimization algorithm was built upon the simulation model to size the condenser and evaporator heat transfer areas, and also the cabinet insulation thickness aiming at minimizing the total cost of the refrigeration system for a target energy consumption. A trade-off relation between the minimum cost and the minimum energy consumption was achieved, bringing about a system configuration that consumes 14% less energy than the baseline system if the total cost remains unchanged. The effect of the compressor stroke volume and efficiency on the minimum cost was also taken into account. It was demonstrated that the refrigerator/freezer becomes less costly in cases where highly efficient compressors are used in low energy consumption refrigerating appliances.  相似文献   

20.
S.M. Xu  X.D. Huang 《Solar Energy》2011,85(9):1794-1804
This paper presented a new solar powered absorption refrigeration (SPAR) system with advanced energy storage technology. The advanced energy storage technology referred to the Variable Mass Energy Transformation and Storage (VMETS) technology. The VMETS technology helped to balance the inconsistency between the solar radiation and the air conditioning (AC) load. The aqueous lithium bromide (H2O-LiBr) was used as the working fluid in the system. The energy collected from the solar radiation was first transformed into the chemical potential of the working fluid and stored in the system. Then the chemical potential was transformed into thermal energy by absorption refrigeration when AC was demanded. In the paper, the working principle and the flow of the SPAR system were explained and the dynamic models for numerical simulation were developed. The numerical simulation results can be used to investigate the behavior of the system, including the temperature and concentration of the working fluid, the mass and energy in the storage tanks, the heat loads of heat exchanger devices and so on. An example was given in the paper. In the example, the system was used in a subtropical city like Shanghai in China and its operating conditions were set as a typical summer day: the outdoor temperature varied between 29.5 °C and 38 °C, the maximum AC load was 15.1 kW and the total AC capacity was 166.1 kW h (598.0 MJ). The simulation results indicated that the coefficient of performance (COP) of the system was 0.7525 or 0.7555 when the condenser was cooled by cooling air or by cooling water respectively and the storage density (SD) was about 368.5 MJ/m3. As a result, the required solar collection area was 66 m2 (cooling air) or 62 m2 (cooling water) respectively. The study paves the road for system design and operation control in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号