首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objectives

Contrast agent (CA) relaxivities are generally not well established in vivo, and the relationship between frequency/phase shift and magnetic susceptibility might be a useful alternative for CA quantification.

Materials and methods

Twenty volunteers (25–84 years old) were investigated using test–retest pre-bolus dynamic susceptibility-contrast (DSC) magnetic resonance imaging (MRI). The pre-bolus phase-based venous output function (VOF) time integral was used for arterial input function (AIF) rescaling. Resulting cerebral blood flow (CBF) data for grey matter (GM) were compared with pseudo-continuous arterial spin labelling (ASL). During the main bolus CA passage, the apparent spatial shift (pixel shift) of the superior sagittal sinus (seen in single-shot echo-planar imaging (EPI)) was converted to CA concentration and compared with conventional ΔR2*-based data and with a predicted phase-based VOF from the pre-bolus experiment.

Results

The phase-based pre-bolus VOF resulted in a reasonable inter-individual GM CBF variability (coefficient of variation 28 %). Comparison with ASL CBF values implied a tissue R2*-relaxivity of 32 mM?1 s?1. Pixel-shift data at low concentrations (data not available at peak concentrations) were in reasonable agreement with the predicted phase-based VOF.

Conclusion

Susceptibility-induced phase shifts and pixel shifts are potentially useful for large-vein CA quantification. Previous predictions of a higher R2*-relaxivity in tissue than in blood were supported.
  相似文献   

2.

Objective

In arterial spin labeling (ASL), the cardiac cycle might adversely influence signal-stability by varying the amount of label created, labeling efficiency and/or transport times. Due to the long labeling duration in pseudo-Continuous ASL (pCASL), the blood labeled last contributes most to the ASLsignal. The present study investigated, using numerical simulations and in vivo experiments, the effect of the cardiac cycle on pCASL, thereby focusing on the end-of-labeling.

Materials and methods

In the in vivo experiments the end-of-labeling was timed to a specific cardiac phase while a long labeling duration of >7 s was used to isolate the influence of the lastly labeled spins on ASL-signal stability.

Results

Simulations showed dependence of the ASL-signal on the cardiac phase of the end-of-labeling, and that the variation in signal was more pronounced at lower heart rates. The ASL-signal variation was small (~4%), but could be effectively reduced by simulated end-of-labeling triggering. In vivo, no difference in mean CBF (p = 0.58) nor in CBF temporal-STD (p = 0.44) could be detected between triggered and non-triggered acquisitions.

Conclusion

Influence of the cardiac cycle on pCASL-signal stability is small and triggering the start-of-labeling and end-of-labeling can be considered not to have practical implications to improve stability.
  相似文献   

3.

Objective

Our aim was to investigate the technical feasibility of a novel motion compensation method for cardiac magntic resonance (MR) T1 and extracellular volume fraction (ECV) mapping.

Materials and methods

Native and post-contrast T1 maps were obtained using modified look-locker inversion recovery (MOLLI) pulse sequences with acquisition scheme defined in seconds. A nonrigid, nonparametric, fast elastic registration method was applied to generate motion-corrected T1 maps and subsequently ECV maps. Qualitative rating was performed based on T1 fitting-error maps and overlay images. Local deformation vector fields were produced for quantitative assessment. Intra- and inter-observer reproducibility were compared with and without motion compensation.

Results

Eighty-two T1 and 39 ECV maps were obtained in 21 patients with diverse myocardial diseases. Approximately 60% demonstrated clear quality improvement after motion correction for T1 mapping, particularly for the poor-rating cases (23% before vs 2% after). Approximately 67% showed further improvement with co-registration in ECV mapping. Although T1 and ECV values were not clinically significantly different before and after motion compensation, there was improved intra- and inter-observer reproducibility after motion compensation.

Conclusions

Automated motion correction and co-registration improved the qualitative assessment and reproducibility of cardiac MR T1 and ECV measurements, allowing for more reliable ECV mapping.
  相似文献   

4.

Objective

To find structural differences between brain metastases of lung and breast cancer, computing their heterogeneity parameters by means of both 2D and 3D texture analysis (TA).

Materials and methods

Patients with 58 brain metastases from breast (26) and lung cancer (32) were examined by MR imaging. Brain lesions were manually delineated by 2D ROIs on the slices of contrast-enhanced T1-weighted (CET1) images, and local binary patterns (LBP) maps were created from each region. Histogram-based (minimum, maximum, mean, standard deviation, and variance), and co-occurrence matrix-based (contrast, correlation, energy, entropy, and homogeneity) 2D, weighted average of the 2D slices, and true 3D TA were obtained on the CET1 images and LBP maps.

Results

For LBP maps and 2D TA contrast, correlation, energy, and homogeneity were identified as statistically different heterogeneity parameters (SDHPs) between lung and breast metastasis. The weighted 3D TA identified entropy as an additional SDHP. Only two texture indexes (TI) were significantly different with true 3D TA: entropy and energy. All these TIs discriminated between the two tumor types significantly by ROC analysis. For the CET1 images there was no SDHP at all by 3D TA.

Conclusion

Our results indicate that the used textural analysis methods may help with discriminating between brain metastases of different primary tumors.
  相似文献   

5.

Objectives

We evaluated the vascularity of retained products of conception (RPOC) using arterial spin-labeling magnetic resonance imaging (ASL-MRI) to clarify the clinical feasibility of this approach.

Materials and methods

A pulsed-continuous ASL sequence with echo-planar imaging (EPI) acquisitions was used. Ten consecutive patients with RPOC were enrolled. All ASL images were evaluated visually and semiquantitatively and compared with the findings of Doppler ultrasound (US) and dynamic contrast-enhanced MRI (DCE-MRI).

Results

The technical success rate was 93.7% (15/16 scans). One failed case was excluded from the analysis. Six patients showed quite high signals over RPOC, while three patients showed no abnormal signals. Doppler US alone failed to detect the hypervascular area in two cases, and ASL-MRI alone failed in three. A significant linear correlation was found between semiquantitative values of ASL-MRI and DCE-MRI. All six patients showing high signals on ASL-MRI underwent follow-up MRI after therapy. High signals in five patients decreased visually and semiquantitatively, while one patient showed signal increases.

Conclusion

Evaluation of RPOC using ASL-MRI was clinically feasible and response to therapy could be evaluated. However, the clinical advantages over conventional imaging remain unclear and need to be evaluated.
  相似文献   

6.

Objective

To accelerate super-selective arterial spin labeling (ASL) angiography by using a single control condition denoted as cycled super-selective arterial spin labeling.

Materials and methods

A single non-selective control image is acquired that is shared by selective label images. Artery-selective imaging is possible by geometrically changing the position of the labeling focus to more than one artery of interest during measurement. The presented approach is compared to conventional super-selective imaging in terms of its labeling efficiency inside and outside the labeling focus using numerical simulations and in vivo measurements. Additionally, the signal-to-noise ratios of the images are compared to non-selective ASL angiography and analyzed using a two-way ANOVA test and calculating the Pearson’s correlation coefficients.

Results

The results indicate that the labeling efficiency is not reduced within the labeled artery, but can increase as a function of distance to the artery of interest when compared to conventional super-selective ASL. In the final images, no statistically significant difference of image quality can be observed while the acquisition duration could be reduced when the major brain feeding arteries are being tagged.

Conclusion

Using super-selective arterial spin labeling, a single non-selective control acquisition suffices for reconstructing selective angiograms of the cerebral vasculature, thereby accelerating image acquisition of the major intracranial arteries without notable loss of information.
  相似文献   

7.

Objective

Point spread function (PSF) mapping enables estimating the displacement fields required for distortion correction of echo planar images. Recently, a highly accelerated approach was introduced for estimating displacements from the phase slope of under-sampled PSF mapping data. Sampling schemes with varying spacing were proposed requiring stepwise phase unwrapping. To avoid unwrapping errors, an alternative approach applying the concept of finite rate of innovation to PSF mapping (FRIP) is introduced, using a pattern search strategy to locate the PSF peak, and the two methods are compared.

Materials and methods

Fully sampled PSF data was acquired in six subjects at 3.0 T, and distortion maps were estimated after retrospective under-sampling. The two methods were compared for both previously published and newly optimized sampling patterns. Prospectively under-sampled data were also acquired. Shift maps were estimated and deviations relative to the fully sampled reference map were calculated.

Results

The best performance was achieved when using FRIP with a previously proposed sampling scheme. The two methods were comparable for the remaining schemes. The displacement field errors tended to be lower as the number of samples or their spacing increased.

Conclusion

A robust method for estimating the position of the PSF peak has been introduced.
  相似文献   

8.

Objective

To investigate the precision and accuracy of a new semi-automated method for kidney segmentation from single-breath-hold non-contrast MRI.

Materials and methods

The user draws approximate kidney contours on every tenth slice, focusing on separating adjacent organs from the kidney. The program then performs a sequence of fully automatic steps: contour filling, interpolation, non-uniformity correction, sampling of representative parenchyma signal, and 3D binary morphology. Three independent observers applied the method to images of 40 kidneys ranging in volume from 94.6 to 254.5 cm3. Manually constructed reference masks were used to assess accuracy.

Results

The volume errors for the three readers were: 4.4 % ± 3.0 %, 2.9 % ± 2.3 %, and 3.1 % ± 2.7 %. The relative discrepancy across readers was 2.5 % ± 2.1 %. The interactive processing time on average was 1.5 min per kidney.

Conclusions

Pending further validation, the semi-automated method could be applied for monitoring of renal status using non-contrast MRI.
  相似文献   

9.

Objectives

We assessed the use of high-resolution ultra-high-field diffusion magnetic resonance imaging (dMRI) to determine neuronal fiber orientation density functions (fODFs) throughout the human brain, including gray matter (GM), white matter (WM), and small intertwined structures in the cerebellopontine region.

Materials and methods

We acquired 7-T whole-brain dMRI data of 23 volunteers with 1.4-mm isotropic resolution; fODFs were estimated using constrained spherical deconvolution.

Results

High-resolution fODFs enabled a detailed view of the intravoxel distributions of fiber populations in the whole brain. In the brainstem region, the fODF of the extra- and intrapontine parts of the trigeminus could be resolved. Intrapontine trigeminal fiber populations were crossed in a network-like fashion by fiber populations of the surrounding cerebellopontine tracts. In cortical GM, additional evidence was found that in parts of primary somatosensory cortex, fODFs seem to be oriented less perpendicular to the cortical surface than in GM of motor, premotor, and secondary somatosensory cortices.

Conclusion

With 7-T MRI being introduced into clinical routine, high-resolution dMRI and derived measures such as fODFs can serve to characterize fine-scale anatomic structures as a prerequisite to detecting pathologies in GM and small or intertwined WM tracts.
  相似文献   

10.

Objective

Ultrahigh field MRI provides great opportunities for medical diagnostics and research. However, ultrahigh field MRI also brings challenges, such as larger magnetic susceptibility induced field changes. Parallel-transmit radio-frequency pulses can ameliorate these complications while performing advanced tasks in routine applications. To address one class of such pulses, we propose an optimal-control algorithm as a tool for designing advanced multi-dimensional, large flip-angle, radio-frequency pulses. We contrast initial conditions, constraints, and field correction abilities against increasing pulse trajectory acceleration factors.

Materials and methods

On an 8-channel 7T system, we demonstrate the quasi-Newton algorithm with pulse designs for reduced field-of-view imaging with an oil phantom and in vivo with scans of the human brain stem. We used echo-planar imaging with 2D spatial-selective pulses. Pulses are computed sufficiently rapid for routine applications.

Results

Our dataset was quantitatively analyzed with the conventional mean-square-error metric and the structural-similarity index from image processing. Analysis of both full and reduced field-of-view scans benefit from utilizing both complementary measures.

Conclusion

We obtained excellent outer-volume suppression with our proposed method, thus enabling reduced field-of-view imaging using pulse trajectory acceleration factors up to 4.
  相似文献   

11.

Objective

This study evaluates the inter-site and intra-site reproducibility of 7 Tesla brain imaging and compares it to literature values for other field strengths.

Materials and methods

The same two subjects were imaged at eight different 7 T sites. MP2RAGE, TSE, TOF, SWI, EPI as well as B1 and B0 field maps were analyzed quantitatively to assess inter-site reproducibility. Intra-site reproducibility was measured with rescans at three sites.

Results

Quantitative measures of MP2RAGE scans showed high agreement. Inter-site and intra-site reproducibility errors were comparable to 1.5 and 3 T. Other sequences also showed high reproducibility between the sites, but differences were also revealed. The different RF coils used were the main source for systematic differences between the sites.

Conclusion

Our results show for the first time that multi-center brain imaging studies of the supratentorial brain can be performed at 7 T with high reproducibility and similar reliability as at 3T. This study develops the basis for future large-scale 7 T multi-site studies.
  相似文献   

12.

Objectives

Acceleration selective arterial spin labeling (AccASL) is a spatially non-selective labeling technique, used in traditional ASL methods, which labels spins based on their flow acceleration rather than spatial localization. The exact origin of the AccASL signal within the vasculature is not completely understood. To obtain more insight into this, the acceleration selective module was performed followed by a velocity selective module, which is used in velocity selective arterial spin labeling (VS-ASL).

Materials and methods

Nine healthy volunteers were scanned with various combinations of the control and label conditions in both the acceleration and velocity selective module. The cut-off acceleration (0.59 m/s2) or velocity (2 cm/s) was kept constant in one module, while it was varied over a large range in the other module. With the right subtractions this resulted in AccASL, VS-ASL, combined AccASL and VS-ASL signal, and signal from one module with crushing from the other.

Results

The label created with AccASL has an overlap of approximately 50% in the vascular region with VS-ASL, but also originates from smaller vessels closer to the capillaries.

Conclusion

AccASL is able to label spins both in the macro- and meso-vasculature, as well as in the microvasculature.
  相似文献   

13.

Objectives

Spin dephasing of the local magnetization in blood vessel networks can be described in the static dephasing regime (where diffusion effects may be ignored) by the established model of Yablonskiy and Haacke. However, for small capillary radii, diffusion phenomena for spin-bearing particles are not negligible.

Material and methods

In this work, we include diffusion effects for a set of randomly distributed capillaries and provide analytical expressions for the transverse relaxation times T2* and T2 in the strong collision approximation and the Gaussian approximation that relate MR signal properties with microstructural parameters such as the mean local capillary radius.

Results

Theoretical results are numerically validated with random walk simulations and are used to calculate capillary radius distribution maps for glioblastoma mouse brains at 9.4 T. For representative tumor regions, the capillary maps reveal a relative increase of mean radius for tumor tissue towards healthy brain tissue of \(128 \pm 23 \%\) (p < 0.001).

Conclusion

The presented method may be used to quantify angiogenesis or the effects of antiangiogenic therapy in tumors whose growth is associated with significant microvascular changes.
  相似文献   

14.

Objective

Arterial spin labelling (ASL) techniques benefit from the increased signal-to-noise ratio and the longer T 1 relaxation times available at ultra-high field. Previous pulsed ASL studies at 7 T concentrated on the superior regions of the brain because of the larger transmit radiofrequency inhomogeneity experienced at ultra-high field that hinders an adequate inversion of the blood bolus when labelling in the neck. Recently, researchers have proposed to overcome this problem with either the use of dielectric pads, through dedicated transmit labelling coils, or special adiabatic inversion pulses.

Materials and methods

We investigate the performance of an optimised time-resampled frequency-offset corrected inversion (TR-FOCI) pulse designed to cause inversion at much lower peak B 1 + . In combination with a PICORE labelling, the perfusion signal obtained with this pulse is compared against that obtained with a FOCI pulse, with and without dielectric pads.

Results

Mean grey matter perfusion with the TR-FOCI was 52.5 ± 10.3 mL/100 g/min, being significantly higher than the 34.6 ± 2.6 mL/100 g/min obtained with the FOCI pulse. No significant effect of the dielectric pads was observed.

Conclusion

The usage of the B 1 + -optimised TR-FOCI pulse results in a significantly higher perfusion signal. PICORE–ASL is feasible at ultra-high field with no changes to operating conditions.
  相似文献   

15.

Objective

We assess inter- and intra-subject variability of magnetic resonance (MR)-based attenuation maps (MRμMaps) of human subjects for state-of-the-art positron emission tomography (PET)/MR imaging systems.

Materials and methods

Four healthy male subjects underwent repeated MR imaging with a Siemens Biograph mMR, Philips Ingenuity TF and GE SIGNA PET/MR system using product-specific MR sequences and image processing algorithms for generating MRμMaps. Total lung volumes and mean attenuation values in nine thoracic reference regions were calculated. Linear regression was used for comparing lung volumes on MRμMaps. Intra- and inter-system variability was investigated using a mixed effects model.

Results

Intra-system variability was seen for the lung volume of some subjects, (p = 0.29). Mean attenuation values across subjects were significantly different (p < 0.001) due to different segmentations of the trachea. Differences in the attenuation values caused noticeable intra-individual and inter-system differences that translated into a subsequent bias of the corrected PET activity values, as verified by independent simulations.

Conclusion

Significant differences of MRμMaps generated for the same subjects but different PET/MR systems resulted in differences in attenuation correction factors, particularly in the thorax. These differences currently limit the quantitative use of PET/MR in multi-center imaging studies.
  相似文献   

16.

Objectives

The objective of the current work was to evaluate flow and turbulent kinetic energy in different transcatheter aortic valve implants using highly undersampled time-resolved multi-point 3-directional phase-contrast measurements (4D Flow MRI) in an in vitro setup.

Materials and methods

A pulsatile flow setup was used with a compliant tubing mimicking a stiff left ventricular outflow tract and ascending aorta. Five different implants were measured using a highly undersampled multi-point 4D Flow MRI sequence. Velocities and turbulent kinetic energy values were analysed and compared.

Results

Strong variations of turbulent kinetic energy distributions between the valves were observed. Maximum turbulent kinetic energy values ranged from 100 to over 500 J/m3 while through-plane velocities were similar between all valves.

Conclusion

Highly accelerated 4D Flow MRI for the measurement of velocities and turbulent kinetic energy values allowed for the assessment of hemodynamic parameters in five different implant models. The presented setup, measurement protocol and analysis methods provides an efficient approach to compare different valve implants and could aid future novel valve designs.
  相似文献   

17.

Objective

Echo-planar imaging (EPI) with CYlindrical Center-out spatiaL Encoding (EPICYCLE) is introduced as a novel hybrid three-dimensional (3D) EPI technique. Its suitability for the tracking of a short bolus created by pseudo-continuous arterial spin labeling (pCASL) through the cerebral vasculature is demonstrated.

Materials and methods

EPICYCLE acquires two-dimensional planes of k-space along center-out trajectories. These “spokes” are rotated from shot to shot about a common axis to encode a k-space cylinder. To track a bolus of labeled blood, the same subset of evenly distributed spokes is acquired in a cine fashion after a short period of pCASL. This process is repeated for all subsets to fill the whole 3D k-space of each time frame.

Results

The passage of short pCASL boluses through the vasculature of a 3D imaging slab was successfully imaged using EPICYCLE. By choosing suitable sequence parameters, the impact of slab excitation on the bolus shape could be minimized. Parametric maps of signal amplitude, transit time, and bolus width reflected typical features of blood transport in large vessels.

Conclusion

The EPICYCLE technique was successfully applied to track a short bolus of labeled arterial blood during its passage through the cerebral vasculature.
  相似文献   

18.

Objective

We demonstrate the potential clinical utility of a 4D non-gadolinium dynamic angiography technique based on arterial spin-labeling called contrast inherent inflow enhanced multi-phase angiography (CINEMA) in pediatric patients.

Materials and Methods

CINEMA was qualitatively compared to conventional time-of-flight (TOF) angiography in a cohort of 31 pediatric patients at 3 Tesla.

Results

CINEMA data were successfully acquired and reconstructed in all patients with no image artifacts. There were no cases where CINEMA was rated inferior to TOF in depicting intracranial vessel conspicuity. In 19 cases, CINEMA was rated equivalent to TOF and in the 12 remaining cases CINEMA was rated superior to TOF.

Conclusion

There is a steadily rising concern in adults and children over the potential effects of intracranial deposition of gadolinium. CINEMA is therefore a viable alternative in dynamic neurovascular imaging.
  相似文献   

19.

Objectives

We aimed to develop the first fully automated 3D gallbladder segmentation approach to perform volumetric analysis in volume data of magnetic resonance (MR) cholangiopancreatography (MRCP) sequences. Volumetric gallbladder analysis is performed for non-contrast-enhanced and secretin-enhanced MRCP sequences.

Materials and methods

Native and secretin-enhanced MRCP volume data were produced with a 1.5-T MR system. Images of coronal maximum intensity projections (MIP) are used to automatically compute 2D characteristic shape features of the gallbladder in the MIP images. A gallbladder shape space is generated to derive 3D gallbladder shape features, which are then combined with 2D gallbladder shape features in a support vector machine approach to detect gallbladder regions in MRCP volume data. A region-based level set approach is used for fine segmentation. Volumetric analysis is performed for both sequences to calculate gallbladder volume differences between both sequences.

Results

The approach presented achieves segmentation results with mean Dice coefficients of 0.917 in non-contrast-enhanced sequences and 0.904 in secretin-enhanced sequences.

Conclusion

This is the first approach developed to detect and segment gallbladders in MR-based volume data automatically in both sequences. It can be used to perform gallbladder volume determination in epidemiological studies and to detect abnormal gallbladder volumes or shapes. The positive volume differences between both sequences may indicate the quantity of the pancreatobiliary reflux.
  相似文献   

20.

Objective

To develop a novel framework for evaluating the accuracy of quantitative analysis on dynamic contrast-enhanced (DCE) MRI with a specific combination of imaging technique, scanning parameters, and scanner and software performance and to test this framework with breast DCE MRI with Time-resolved angiography WIth Stochastic Trajectories (TWIST).

Materials and methods

Realistic breast tumor phantoms were 3D printed as cavities and filled with solutions of MR contrast agent. Full k-space raw data of individual tumor phantoms and a uniform background phantom were acquired. DCE raw data were simulated by sorting the raw data according to TWIST view order and scaling the raw data according to the enhancement based on pharmaco-kinetic (PK) models. The measured spatial and temporal characteristics from the images reconstructed using the scanner software were compared with the original PK model (ground truth).

Results

Images could be reconstructed using the manufacturer’s platform with the modified ‘raw data.’ Compared with the ‘ground truth,’ the RMS error in all images was <10% in most cases. With increasing view-sharing acceleration, the error of the initial uptake slope decreased while the error of peak enhancement increased. Deviations of PK parameters varied with the type of enhancement.

Conclusion

A new framework has been developed and tested to more realistically evaluate the quantitative measurement errors caused by a combination of the imaging technique, parameters and scanner and software performance in DCE-MRI.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号