首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A simultaneously increase in stiffness and toughness is needed for improving polypropylene (PP) competitiveness in automotive industry. The aim of this paper is to investigate the effects of styrene-(ethylene-co-butylene)-styrene triblock copolymer (SEBS) on mechanical and thermal properties of PP, in the presence and the absence of nanoclay. The amount of SEBS in PP was ranged to obtain the matrix with the most favorable stiffness–toughness balance. For this purpose, SEBS domain size and distribution in PP/SEBS blends was determined by means of atomic force microscopy and correlated with mechanical properties. The influence of SEBS on the crystalline structure of PP in PP/organoclay nanocomposites was investigated by X-ray diffraction and differential scanning calorimetry, a synergistic effect of SEBS and nanoclay being pointed out. Moreover large improvement in the impact strength (almost 22 times) was obtained in the case of SEBS-containing nanocomposite in comparison with the composite without SEBS.  相似文献   

2.
Nanocomposites-based on polypropylene (PP), ethylene-propylene diene monomer (EPDM) and Cloisite 15A have wide applications in automotive and aerospace industries and medical apparatus due to their excellent mechanical, thermal and chemical properties. In this study, a nanocomposite of PP/EPDM/nanoclay containing PP (77 wt%), EPDM (20 wt%) and nanoclay (3 wt%) was fabricated by friction stir processing (FSP) method. X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry and tensile testing were performed to determine the morphology and tensile properties of this nanocomposite. The Box-Behnken design was applied to investigate the effect of the process parameters such as tool rotational speed, traverse speed and shoulder temperature on the tensile properties of the nanocomposite. The results showed that the tensile strength increased from 15.8 to 18.2 MPa with increasing the tool rotational speed and shoulder temperature while the elongation-at-break dropped from 46 to 22 %. A maximum tensile strength of 17.6 MPa and a minimum elongation-at-break of 26 % were obtained at the traverse speed of 40 mm/min when the rotational speed and shoulder temperature were at the central levels themselves. The prediction models showed that when the tool rotational speed, traverse speed and shoulder temperature were set, in the given order, as 1200 rpm, 45.65 mm/min and 113.65 °C, a simultaneous maximization of tensile strength of 16.03 MPa and elongation-at-break of 46.41 % was obtained.  相似文献   

3.
Kunyan Wang  Yu Zhang 《Polymer》2008,49(15):3301-3309
The addition of up to 6 part per hundred (phr) of an organoclay to a 80/20 (w/w) PTT/EPDM-g-MA blend led to ternary compounds that came together as a means of balancing stiffness/strength versus toughness/ductility. The effect of organoclay platelets on morphologies and mechanical properties of PTT/EPDM-g-MA/organoclay ternary nanocomposites had been studied by SEM, TEM, WAXD, and mechanical testing. For the 80/20 (w/w) blend, the clay platelets are located inside the dispersed domains of EPDM-g-MA phase. The clay platelets do not act effectively as a barrier for the coalescence of the dispersed domains. The complex viscosities (η) of the 80/20 (w/w) PTT/EPDM-g-MA blend increased with the amount of the organoclay increasing, which are proposed as the reason for the dispersed domain size (D) that becomes smaller at higher clay content. Mechanical tests show that the Young's modulus increases, whereas the tensile strength and the impact strength decrease when the content of the clay increases.  相似文献   

4.
P.J. YoonD.L. Hunter  D.R. Paul 《Polymer》2003,44(18):5323-5339
Polycarbonate nanocomposites were prepared by melt processing from a series of organoclays based on sodium montmorillonite exchanged with various amine surfactants. To explore the effects of matrix molecular weight on dispersion, an organoclay was melt-mixed with a medium molecular weight polycarbonate (MMW-PC) and a high molecular weight polycarbonate (HMW-PC) using a twin screw extruder. The effects of surfactant chemical structure on the morphology and physical properties were explored for nanocomposites formed from HMW-PC. Wide angle X-ray scattering, transmission electron microscopy, and stress-strain behavior were employed to investigate the nanocomposite morphology and physical properties. The modulus enhancement is greater for nanocomposites formed from HMW-PC than MMW-PC. This trend is attributed to the higher shear stress generated during melt processing. A surfactant having both polyoxyethylene and octadecyl tails shows the most significant improvement in modulus with some of the clay platelets fully exfoliated. However, the nanocomposites formed from a range of other organoclays contained both intercalated tactoids and collapsed clay particles with few, if any, exfoliated platelets.  相似文献   

5.
Youngjae Yoo 《Polymer》2008,49(17):3795-3804
An amorphous polyamide (a-PA) and three organoclays, M3(HT)1, M2(HT)2 and (HE)2M1T1, were melt processed to explore the effect of the organoclay structure on the extent of exfoliation and properties of these nanocomposites. Wide angle X-ray scattering, transmission electron microscopy, and stress-strain behavior were used to determine the degree of exfoliation of the nanocomposites. For quantitative assessment of the structure of the nanocomposites, a detailed particle analysis was made to provide various averages of the clay dimensions and aspect ratio. The results evaluated from different methods were generally consistent with each other. Nanocomposites based on the organoclays with one alkyl tail and hydroxyl ethyl groups gave well-exfoliated structures and high matrix reinforcement while nanocomposites from two-tailed organoclay contain a considerable concentration of intercalated stacks. Nanocomposites from the organoclays with one alkyl tail showed slightly better exfoliation and matrix reinforcement than those from the organoclays with hydroxyl ethyl groups. The organoclay structure trends for a-PA are analogous to what has been observed for nylon 6; this suggests that a-PA, like nylon 6, has good affinity for the pristine silicate surface of the clay leading to better exfoliation and enhanced mechanical properties with one-tailed organoclay than multiple-tailed organoclay. Furthermore, heat distortion temperatures were predicted from the dynamic mechanical properties of nanocomposites.  相似文献   

6.
The morphology and properties of polypropylene (PP)/clay nanocomposites are described. The melt intercalation of organophilic clay was carried out with a single‐screw extruder. The effects of two kinds of treatments of clay are discussed. Maleic anhydride (MAH)‐grafted PP was used as a compatibilizer. The expansion of the intergallery distance of the clay was governed by the interaction between the clay treatment and the compatibilizer. In one case, the composites exhibited significantly reduced intensities of diffraction peaks, suggesting partial exfoliation of the clay layers, whereas for the second clay sample, expansion of the gallery height was noted. The mechanical properties of the PP/clay composites showed significant enhancement in their mechanical and thermal properties. About a 35% increase in the tensile modulus and about a 10% increase in the tensile strength were observed. The thermal degradation temperature increased from 270 to about 400°C as a result of the incorporation of clay, and the extent depended on the dispersion of clay in the composite. The most interesting outcome of this study was the changes in morphology for PP/clay composites, which are reported here for the first time. An optical microscopic study revealed that the PP/clay composites could be crystallized at higher temperatures than pure PP and that the morphology was remarkably altered because of the presence of layers of clay. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1786–1792, 2001  相似文献   

7.
Poly(lactic acid) (PLA) nanocomposites with different layered organoclays (variation in the surface treatment of silicate) and one special nanofiller (mixed mineral thixotrope) were melt-compounded using a semi-industrial co-rotating twin-screw extruder. Effects of the silicate surface treatment and shape on the structure as well on processing and utility properties in PLA matrix were investigated. The structural changes in polymer matrix were evaluated from dynamic experiments in the shear flow using low-amplitude oscillatory measurements. Moreover, new approach for morphological investigation of nanocomposites using small-angle X-ray scattering was presented. Concerning utility properties, tests of mechanical and barrier properties were performed to compare enhancement of PLA matrix due to incorporation of different nanoparticles. Surprisingly, filling the PLA matrix with mixed mineral thixotrope resulted into very high material performance (in particular, significant improvement in barrier properties) compared to filling with commercial layered silicates. In this way, new type of nanofiller for PLA applications has been successfully tested.  相似文献   

8.
The effects of ethylene-methyl acrylate-glycidyl methacrylate (E-MA-GMA) terpolymer and three types of organoclays (Cloisite® 15A, 25A, and 30B) on mechanical and rheological properties, and morphology of impact modified polyamide-6/montmorillonite ternary nanocomposites were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), parallel disk rheometry, melt flow index measurements, and tensile and impact tests. The materials were prepared by melt blending using a co-rotating twin-screw extruder. XRD and TEM analyses showed that exfoliated-intercalated nanocomposites were formed in both polyamide-6/Cloisite® 25A and Cloisite® 30B binary nanocomposites and in ternary systems. SEM micrographs showed that rubber domain sizes were larger in the nanocomposites than in their corresponding polyamide-6/elastomer blends. Generally, tensile strength, Young's modulus, and elongation at break decreased with the addition of elastomer to polyamide-6/organoclay binary nanocomposites. In the melt state, liquid-like behavior of polyamide-6 slightly turned to pseudo solid-like in the binary and ternary nanocomposites. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
To have an improved insight about the compatibilization effect of organoclay on immiscible polymers, two different organoclays and preparation techniques were chosen to prepare polyamide6 (PA6)/polystyrene (PS)/organoclay ternary nanocomposites. The morphology analysis based on the results of X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy demonstrated that the type of organoclay and preparation technique had a significant influence on the dispersion and distribution of organoclay in the polymer. It was concluded that blending PS/organoclay nanocomposite synthesized previously via in situ bulk polymerization, with PA6 can realize the full exfoliation of organoclay in the final ternarynanocomposite, while an intercalated structure was achieved by directly blending the three components. The distribution of organoclay could be controlled by tuning the surface property of clay, and hence the interfacial interaction between clay and the polymer matrix. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Polypropylene/clay nanocomposites are attractive candidates for applications requiring good barrier properties because of the inherent features of the polymer matrix. To assess their potential, systematic research relating the barrier performance to the structural characteristics of polypropylene/montmorillonite samples has been conducted. The nanocomposites have been tested in the presence of helium, water vapor, toluene, and methanol, and the unmodified matrix has been found to exhibit better properties than its mixtures with the compatibilizer and/or clay. The method for the interpretation of the results proposed in this study considers the composition of the samples, the morphology of the semicrystalline polymer matrix, and the state of dispersion/exfoliation of the clay layers, along with the specific interactions between the solvent molecules and the system components. In this way, several points have been identified for understanding and improving the performance of the nanocomposites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 618–625, 2007  相似文献   

11.
Abstract

Polyvinylchloride compositions have been prepared by the melt intercalation method using a single screw extruder. Different types of nanofiller based on natural sodium montmorillonite were tested. In particular, intercalating agents containing amine groups combined with co-intercalating agent (low or high molecular weight plasticiser) were examined to determine which is the most suitable not only for producing the largest basal spacing and subsequently the best exfoliation of clay tactoids in polymer matrix, but also for the highest beneficial influence on mechanical properties. In the case of improved exfoliation, the effect of compounding was investigated. Therefore, three values of screw speed were studied and some blends were compounded twice to study the retention time in a single screw extruder and the influence on orientation, dispersion and exfoliation of clay particles in the PVC matrix. Moreover, the effect of different types of plasticiser on mechanical properties was also studied. Bis(2-ethylhexyl) phthalate, Bis(2-ethylhexyl) adipate and Lankroflex epoxy plasticiser were tested. Dynamical thermo-mechanical properties were examined and the tensile properties of thin PVC sheets prepared by calendaring. Using X-ray diffraction and transmission electron microscopy, it was found that partially intercalated and disordered structures arose in polyvinylchloride composites containing sodium montmorillonite, while a fine dispersion of partial exfoliation of individual montmorillonite layers in polyvinylchloride matrix was observed when this clay was organically modified. Finally, the value of the tensile modulus for PVC nanocomposites containing as little as 5 wt-% montmorillonite was increased three times provided that the optimum melt processing conditions were used.  相似文献   

12.
Polypropylene (PP) nanocomposites were prepared by melt intercalation in an intermeshing corotating twin‐screw extruder. The effect of molecular weight of PP‐MA (maleic anhydride‐ modified polypropylene) on clay dispersion and mechanical properties of nanocomposites was investigated. After injection molding, the tensile properties and impact strength were measured. The best overall mechanical properties were found for composites containing PP‐MA having the highest molecular weight. The basal spacing of clay in the composites was measured by X‐ray diffraction (XRD). Nanoscale morphology of the samples was observed by transmission electron microscopy (TEM). The crystallization kinetics was measured by differential scanning calorimetry (DSC) and optical microscopy at a fixed crystallization temperature. Increasing the clay content in PP‐ MA330k/clay, a well‐dispersed two‐component system, caused the impact strength to decrease while the crystallization kinetics and the spherulite size remained almost the same. On the other hand, PP/PP‐MA330k/clay, an intercalated three‐component system containing some dispersed clay as well as the clay tactoids, showed a much smaller size of spherulites and a slight increase in impact strength with increasing the clay content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1562–1570, 2002  相似文献   

13.
The influence of two organically modified montmorillonites on the curing, morphology and mechanical properties of epoxy/poly(vinyl acetate)/organoclay ternary nanocomposites was studied. The organoclays and poly(vinyl acetate) (PVAc) provoked contrary effects on the epoxy curing reaction. Ternary nanocomposites developed different morphologies depending on the PVAc content, that were similar to those observed in the epoxy/PVAc binary blends. The organoclays were only located in the epoxy phase independently of the morphology. All nanocomposites showed intercalated structures with similar clay interlayer distances. Both PVAc and organoclays lowered the Tg of the epoxy phase, the presence of clays did not influence the Tg of the PVAc phase. The addition of the organoclays to the epoxy improved stiffness but lowered ductility while the adition of PVAc improved toughness although reduced stiffness of epoxy thermoset. Ternary nanocomposites exhibited optimal properties that combine the favourable effects of the clay and the thermoplastic. POLYM. COMPOS., 37:2184–2195, 2016. © 2015 Society of Plastics Engineers  相似文献   

14.
A series of polyimide (PI)/organoclay nanocomposite foams containing different contents of organoclay were prepared by the monomer in situ intercalative polymerization. The effect of organoclay on the chemical structure, morphology, mechanical, and thermal properties of the nanocomposite foams was studied. Fourier transform infrared spectra showed that the hydrogen bonds between organoclay and the polymer matrix were formed. X‐ray diffraction and transmission electron microscope results indicated that the organoclay were well dispersed in the PI matrix. The compressive strength and tensile strength of the nanocomposite foams enhanced significantly, especially for the nanocomposite foam containing 4 wt% organoclay, increasing by 15% and 9%, respectively, compared with these of the neat PI foam, and the presence of the organoclay in the PI foam improved apparently the cellular structure of the nanocomposite foams. Besides, thermogravimetric analysis revealed that the addition of organoclay improved the thermal stability of the nanocomposite foams strongly, and dynamic mechanical analysis indicated that the incorporation of organoclay significantly influenced the storage modulus of the nanocomposite foams. POLYM. COMPOS., 35:2311–2317, 2014. © 2014 Society of Plastics Engineers  相似文献   

15.
Ke Wang 《Polymer》2007,48(7):2144-2154
In this study, both organoclay and EPDM-g-MA rubber were used to simultaneously improve the toughness and stiffness of polyamide 6 (PA6). We first prepared PA6/EPDM-g-MA/organoclay ternary nanocomposites using melt blending. Then the composites were subjected to traditional injection molding and so-called dynamic packing injection molding. The dispersion of clay, phase morphology, crystallinity and orientation of PA6 as well the mechanical properties were characterized by WAXD, SEM, DSC, 2D-WAXS and mechanical testing, respectively. The effects of clay on phase morphology and mechanical properties of PA6/EPDM-g-MA blends could be summarized as follows: (1) weakening interphase adhesion between PA6 and EPDM-g-MA rubber particles, resulted in increasing of rubber particle size, as the clay and rubber contents are low; (2) preventing coalescence of rubber domains, arisen in decreasing of rubber particle size, as the clay and rubber contents are high; (3) the blocking effect on the overlap of stress volume around rubber particles caused broadening of the brittle-ductile transition region and decrease of toughness, and (4) the effective stress transfer leading a better reinforcement when the interparticle distance is smaller than the critical value.  相似文献   

16.
Composites based on styrene‐butadiene rubber containing organophilic montmorillonite were produced by melt compounding and conventional sulfur curing. The samples were characterized by X‐ray diffraction and both transmission and scanning electron microscopy. The dispersion of the clay and the spacing between the silicate layers revealed the presence of intercalated, aggregated, and partially exfoliated structures. Infrared spectroscopy also provided clear evidence for clay exfoliation and migration of zinc stearate to the surface of the samples. The crosslink density, evaluated through swelling in toluene, decreased with increasing organoclay content. This behavior could be justified by the partial absorption of the curatives on the filler surface. The mechanical properties of nanocomposites significantly increased when compared with those of unfilled rubber. These enhanced properties were attributed to the intercalation/exfoliation of the organoclay. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

17.
High performance organoclay/polyethersulphone/epoxy hybrid nanocomposites were successfully prepared by solvent method and melting method, respectively. Preparation methods, microstructures, and properties of these hybrid nanocomposites were studied. Since melting method was easy to attain, environmental‐friendly, and able to produce the hybrid nanocomposites with better properties, it proved to be a preferential preparation method. Although the viscosity of the reaction mixture was relatively high in this method, improving temperature to some extent solved this problem. For the study on the microstructures of the hybrid nanocomposites, they are comprised of polyethersulphone/epoxy semi‐interpenetrating network matrices and orderly exfoliated organoclay. The hybrid nanocomposites had good thermal performance, high tensile properties and high fracture toughness. Synergistic toughening effect of polyethersulphone and organoclay on epoxy resin was observed. POLYM. COMPOS., 36:767–774, 2015. © 2014 Society of Plastics Engineers  相似文献   

18.
It has been reported that the cure time t90, scorch time t2, and their difference (t90?t2) of Polybutadiene rubber (BR)/organoclay nanocomposites were much reduced over those of BR. This effect can be attributed to the ammonium groups in the organoclay. The possible formation of a Zn complex in which sulfur and ammonium modifier participate may facilitate the formation of crosslinks. If this assumption is true, it is expected that the organoclay with higher ammonium modifier concentration will give larger torque difference and faster vulcanization rate to the BR/organoclay nanocomposites. The effect of organoclay with different modifier concentration on the vulcanization behavior and mechanical properties of BR/organoclay hybrid was investigated in this study. As expected, the order of the torque difference was BR/Cloisite 15A > BR/Cloisite 10A > BR/Cloisite 20A > BR/Cloisite 25A > BR/Cloisite 30B > BR/Cloisite Na+, and the order of vulcanization rate also showed similar trends. The organoclay with higher modifier concentration gave larger torque difference and faster vulcanization rate to the BR/organoclay nanocomposites. POLYM. ENG. SCI., 47:308–313, 2007. © 2007 Society of Plastics Engineers.  相似文献   

19.
Nanocomposites composed of organoclay and thermoplastic vulcanizates (TPVs) based on uncompatibilized or compatibilized polypropylene (PP)/ethylene–propylene–diene rubber (EPDM) blends were prepared in this study. The morphology of the nanocomposites was studied with wide‐angle X‐ray diffraction and transmission electron microscopy, which suggested that the addition of the compatibilizer played a key role in determining the morphology of the composites because of their interaction with the clay surface. Scanning electron microscopy study indicated the changes in the morphology of the rubber particles. Dynamic mechanical analysis was also applied to the analysis of these phenomena. Moreover, for nanocomposites with uncompatibilized PP/EPDM blends as the matrix, the samples showed tensile enhancement compared with neat TPV. Although the addition of the compatibilizer changed tensile properties of the composites in a rather different trend, the tensile modulus increased dramatically when the compatibilizer was added. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40618.  相似文献   

20.
A carefully selected series of organic amine salts were ion exchanged with sodium montmorillonite to form organoclays varying in amine structure or exchange level relative to the clay. Each organoclay was melt-mixed with a high molecular grade of nylon 6 (HMW) using a twin screw extruder; some organoclays were also mixed with a low molecular grade of nylon 6 (LMW). Wide angle X-ray scattering, transmission electron microscopy, and stress-strain behavior were used to evaluate the effect of amine structure on nanocomposite morphology and physical properties. Three surfactant structural issues were found to significantly affect nanocomposite morphology and properties in the case of the HMW nylon 6: decreasing the number of long alkyl tails from two to one tallows, use of methyl rather than hydroxy-ethyl groups, and use of an equivalent amount of surfactant with the montmorillonite, as opposed to adding excess, lead to greater extents of silicate platelet exfoliation, increased moduli, higher yield strengths, and lower elongation at break. LMW nanocomposites exhibited similar surfactant structure-nanocomposite behavior. Overall, nanocomposites based on HMW nylon 6 exhibited higher extents of platelet exfoliation and better mechanical properties than nanocomposites formed from the LMW polyamide, regardless of the organoclay used. This trend is attributed to the higher melt viscosity and consequently the higher shear stresses generated during melt processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号