首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 494 毫秒
1.
In the present study, a sinusoidal shear and normal deformation theory taking into account effects of transverse shear as well as transverse normal is used to develop the analytical solution for the bidirectional bending analysis of isotropic, transversely isotropic, laminated composite and sandwich rectangular plates. The theory accounts for adequate distribution of the transverse shear strains through the plate thickness and traction free boundary conditions on the plate boundary surface, thus a shear correction factor is not required. The displacement field uses sinusoidal function in terms of thickness coordinate to include the effect of transverse shear and the cosine function in terms of thickness coordinate is used in transverse displacement to include the effect of transverse normal. The kinematics of the present theory is much richer than those of the other higher order shear deformation theories, because if the trigonometric term is expanded in power series, the kinematics of higher order theories are implicitly taken into account to good deal of extent. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. The Navier solution for simply supported laminated composite plates has been developed. Results obtained for displacements and stresses of simply supported rectangular plates are compared with those of other refined theories and exact elasticity solution wherever applicable.  相似文献   

2.
A two-dimensional finite element model is presented to perform the linear static analysis of laminated orthotropic composite plates based on a refined higher order shear deformation theory. The theory accounts for parabolic distributions of transverse shear stresses and requires no shear correction factors. A finite element program is developed using serendipity element with seven degrees of freedom per node. The present solutions are compared with those obtained using three-dimensional elasticity theory and those obtained by other researchers. The theory accurately predicts displacements and transverse shear stresses compared to previously developed theories for thick plates and are very close to three-dimensional elasticity solutions. The effects of transverse shear deformation, material anisotropy, aspect ratio, fiber orientation and lamination sequence on transverse shear stresses are investigated. The error in values of transverse shear stresses decreases as the number of lamina increases, for a plate of same thickness. An increase in degree of anisotropy results in lower values of deflection in the plate. For cross-ply plate an increase in anisotropy results in an increase in effective stress whereas for angle-ply plate the effect is almost negligible. Through thickness variation of transverse shear stresses are independent of anisotropy. The maximum effective stress increases exponentially at lower values of anisotropy and reaches to an asymptotic value at higher values. The stacking sequence has a significant effect on the transverse deflections and shear stress. Rectangular plates experience less effective, in-plane and transverse shear stresses compared to square plates.  相似文献   

3.
This paper presents a generalized layerwise higher-order shear deformation theory for laminated composite and sandwich plates. We exploit a higher-order shear deformation theory in each layer such that the continuity of the displacement and transverse shear stresses at the layer interfaces is ensured. Thanks for enforcing the continuity of the displacement and transverse shear stresses at an inner-laminar layer, the minimum number of variables is retained from the present theory in comparison with other layerwise theories. The method requires only five variables, the same as what obtained from the first- and higher-order shear deformation theories. In comparison with the shear deformation theories based on the equivalent single layer, the present theory is capable of producing a higher accuracy for inner-laminar layer shear stresses. The free boundary conditions of transverse shear stresses at the top and bottom surfaces of the plate are fulfilled without any shear correction factors. The discrete system equations are derived from the Galerkin weak form, and the solution is obtained by isogeometric analysis (IGA). The discrete form requires the C1 continuity of the transverse displacement, and hence NURBS basis functions in IGA naturally ensure this condition. The laminated composite and sandwich plates with various geometries, aspect ratios, stiffness ratios and boundary conditions are studied. The obtained results are compared with the 3D elasticity solution, the analytical as well as numerical solutions based on various plate theories.  相似文献   

4.
A C0-type global-local higher order theory including interlaminar stress continuity is proposed for the cross-ply laminated composite and sandwich plates in this paper, which is able to a priori satisfy the continuity conditions of transverse shear stresses at interfaces. Moreover, total number of unknowns involved in the model is independent of number of layers. Compared to other higher-order theories satisfying the continuity conditions of transverse shear stresses at interfaces, merit of the proposed model is that the first derivatives of transverse displacement w have been taken out from the in-plane displacement fields, so that the C0 interpolation functions is only required during its finite element implementation. To verify the present model, a C0 three-node triangular element is used for bending analysis of laminated composite and sandwich plates. It ought to be shown that all variables involved in present model are discretized by only using linear interpolation functions within an element. Numerical results show that the C0 plate element based on the present theory may accurately calculate transverse shear stresses without any postprocessing, and the present results agree well with those obtained from the C1-type higher order theory. Compared with the C1 plate bending element, the present finite element is simple, convenient to use and accurate enough.  相似文献   

5.
The objective of this paper is to present an equivalent single-layer shear deformation theory for evaluation of displacements and stresses of cross-ply laminated plates subjected to uniformly distributed nonlinear thermo-mechanical load. A trigonometric shear deformation theory is used. The in-plane displacement field uses a sinusoidal function in terms of the thickness coordinate to include the shear deformation effect. The theory satisfies the shear stress free boundary conditions on the top and bottom surfaces of the plate. The present theory obviates the need of a shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. Stresses and displacements for orthotropic, two-layer antisymmetric, and three-layer symmetric square cross-ply laminated plates subjected to uniformly distributed nonlinear thermo-mechanical load are obtained. Numerical results of the present theory for displacement and thermal stresses are compared with those of classical, first-order and higher-order shear deformation plate theories.  相似文献   

6.
A simple refined discrete-layer theory of anisotropic laminated composite plates is substantiated. The theory is based on the assumption of a piecewise linear variation of the in-plane displacement components and of the constancy of the transverse displacement throughout the thickness of the laminate. This plate model incorporates transverse shear deformation, dynamic and thermal effects as well as the geometrical non-linearities and fulfills the continuity conditions for the displacement components and transverse shear stresses at the interfaces between laminae. As it is shown in the paper, the refinement implying the fulfillment of continuity conditions is not accompanied by an increase of the number of independent unknown functions, as implied in the standard first order transverse shear deformation theory. It is also shown that the within the framework of the linearized static counterpart of the theory, several theorems analogous to the ones in the 3-D elasticity theory could be established. These concern the energetic theorems, Betti's reciprocity theorem, the uniqueness theorem for the solutions of boundary-value problems of elastic composite plates, etc. Finally, comparative remarks on the present and standard first order transverse shear deformation theories are made and pertinent conclusions about its usefulness and further developments are outlined.  相似文献   

7.
For the analysis of cross-ply composite laminated plates an assumption based on the theory of composite beams is presented. Under the assumption the in-plane displacements between layers are continuous and the transverse shear stresses between layers are also continuous. Equilibrium equations and boundary conditions which are similar to those of the classical plate theory are obtained. Exact closed-form solutions are compared with the three-dimensional elasticity solutions. The results of the present theory agree very closely with the exact solutions.  相似文献   

8.
In this paper, a C0-type higher-order theory is developed for bending analysis of laminated composite and sandwich plates subjected to thermal/mechanical loads. The total number of unknowns in the present theory is independent of number of layers. The continuity conditions of transverse shear stresses at interfaces are a priori enforced. Moreover, the conditions of zero transverse shear stresses on the upper and lower surfaces are also considered. Based on the developed higher order theory, the typical solutions are presented for comparison. It is very important that the first derivatives of transverse displacement w have been taken out from the in-plane displacement fields of the proposed model, so that its finite element counterparts may avoid using the C1 interpolation functions. To assess the developed theory, the C1-type higher-order theory is chosen for comparison. Numerical results show that the present model can accurately predict the thermal/mechanical response of laminated composite and sandwich plates. Moreover, the present model is able to accurately calculated transverse shear stresses directly from constitutive equations without any postprocessing methods.  相似文献   

9.
A two-dimensional global higher-order deformation theory is presented for thermal buckling of cross-ply laminated composite and sandwich plates. By using the method of power series expansion of continuous displacement components, a set of fundamental governing equations which can take into account the effects of both transverse shear and normal stresses is derived through the principle of virtual work. Several sets of truncated Mth-order approximate theories are applied to solve the eigenvalue problems of a simply supported multilayered plate. Modal transverse shear and normal stresses can be calculated by integrating the three-dimensional equations of equilibrium in the thickness direction, and satisfying the continuity conditions at the interface between layers and stress boundary conditions at the external surfaces. Numerical results are compared with those of the published three-dimensional layerwise theory in which both in-plane and normal displacements are assumed to be C0 continuous in the continuity conditions at the interface between layers. Effects of the difference of displacement continuity conditions between the three-dimensional layerwise theory and the global higher-order theory are clarified in thermal buckling problems of multilayered composite plates.  相似文献   

10.
In this paper, the effect of non-ideal boundary conditions and initial stresses on the vibration of laminated plates on Pasternak foundation is studied. The plate has simply supported boundary conditions and is assumed that one of the edges of the plate allows a small non-zero deflection and moment. The initial stresses are due to in-plane loads. The vibration problem is solved analytically using the Lindstedt–Poincare perturbation technique. So the frequencies and mode shapes of the plate with non-ideal boundary condition is extracted by considering the Pasternak foundation and in-plane stresses. The results of finite element simulation, using ANSYS software, are presented and compared with the analytical solution. The effect of various parameters like stiffness of foundation, boundary conditions and in-plane stresses on the vibration of the plate is discussed. Dependency of non-ideal boundary conditions on the aspect ratio of the plate for changing the frequencies of vibrations is presented. The relation between the shear modulus of elastic foundation and the frequencies of the plate is investigated.  相似文献   

11.
12.
Postbuckling analysis is presented for a simply supported, shear-deformable, composite laminated plate subjected to uniaxial compression and resting on a two-parameter (Pasternak-type) elastic foundation. The initial geometric imperfection of the plate is taken into account. Two cases of in-plane boundary conditions are considered. The formulations are based on Reddy’s higher-order shear-deformation plate theory, including plate–foundation interaction. The analysis uses a deflection-type perturbation technique to determine buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the performance of perfect and imperfect, antisymmetric angle-ply and symmetric cross-ply laminated plates resting on Pasternak-type elastic foundations from which results for Winkler elastic foundations are obtained as a limiting case. The effects played by foundation stiffness, transverse shear deformation, the character of the in-plane boundary conditions, plate aspect ratio, total number of plies, fiber orientation, and initial geometric imperfections are studied.  相似文献   

13.
A quasi-conforming triangular laminated shell element based on a refined first-order shear deformation theory is presented. The Hu-Washizu variational principle, involving strain and displacement fields as variables, with stresses being considered as Lagrange multipliers, is used to develop the laminate composite shell element. Both strains and displacements are discretized in the element, while displacements alone are discretized at the boundary. The inter-element C 1 continuity is satisfied a posteriori in a weak form. Due to the importance of rotations and shear deformation in the geometrically non-linear analyses of shells, 7 degrees of freedom per node are chosen, viz. three displacements, two first-derivatives in the in-plane directions of the out-of-plane displacement, and two transverse shear strains at each node. To consider the effect of transverse shear deformation on the global behavior of the laminated composite shell, the Reissner-Mindlin first-order theory, with shear correction factors of Chow and Whitney, is adopted. The transverse shear stresses are obtained through the integration of the 3-D equilibrium equations; and the warping induced by transverse shear is considered in the calculation of the in-plane stresses to improve their accuracy. Numerical examples show that the element has good convergence properties and leads to highly accurate stresses.  相似文献   

14.
A simple layerwise higher-order zig-zag model is proposed for the bending of laminated composite shells. The model provides a cubic variation of both the in-plane displacements and the transverse shear stresses within each layer. As the displacement model satisfies the zero transverse shear stress conditions at the free surfaces, there is no need for the use of shear correction factors. By imposing the continuity of the in-plane displacements and the transverse shear stresses at the interfaces, the number of variables is shown to be the same as that given by the first-order shear deformation shell theory, irrespective of the number of layers considered. For the sake of consistency, all terms of the order of the thickness coordinate-to-radius ratio have been retained in the derivation of the governing equations. Numerical results for the cylindrical bending of thick, symmetric homogeneous orthotropic and three-layer laminated shells under sinusoidal loading show that the maximum transverse deflections and in-plane stresses are in good agreement with available exact elasticity solutions for radius-to-thickness ratios greater than or equal to four.  相似文献   

15.
Accurate evaluation of transverse stresses in laminated composites and sandwich plates using 2D FE models involves cumbersome post-processing techniques. In this paper a simple and efficient method has been proposed for accurate evaluation of through-the-thickness distribution of transverse stresses in composites and sandwich laminates by using a displacement based C0 FE model (2D) derived from Refined Higher Order Shear Deformation Theory (RHSDT) and a Least Square Error (LSE) method. The C0 FE model satisfies the inter-laminar shear stress continuity conditions at the layer interfaces and zero transverse shear stress conditions at the top and bottom of the plate. In this model the first derivatives of transverse displacement have been treated as independent variables to circumvent the problem of C1 continuity associated with the above plate theory (RHSDT). The LSE method is applied to the 3D equilibrium equations of the plate problem at the post-processing stage, after in-plane stresses are calculated by using the above FE model based on RHSDT. Thus the proposed method is quite simple and elegant compared to the usual method of integrating the 3D equilibrium equations at the post-processing stage for calculation of transverse stresses in a composite laminate. In the proposed method, the first two equations of equilibrium are utilized to compute the transverse shear stress variation through the thickness of a laminated plate whereas the third equation of equilibrium gives the normal stress variation. Accuracy of the proposed method is demonstrated in the numerical examples through comparison of the present results with those obtained from different models based on higher order shear deformation theory (HSDT) and 3D elasticity solutions.  相似文献   

16.
A layerwise trigonometric shear deformation theory for flexural analysis of two-layered laminated plates, taking into account transverse shear deformation effects, is presented. The present theory has only three variables, that is, two variables less than those in the first-order shear deformation theory. The displacement field uses a sinusoidal function in terms of thickness coordinate to represent the shear deformation. The noteworthy feature of the theory is that the transverse shear stresses can be obtained directly from the use of constitutive relations with reasonable accuracy, satisfying the shear stress free surface conditions at the top and bottom surfaces of the plate and continuity conditions at interface between the layers. The transverse shear stresses can also be obtained, with better accuracy, by integrating equilibrium equations. The theory obviates the need for a shear correction factor. The governing equations and boundary conditions are obtained using the principle of virtual work. A two-layered cross-ply laminated plate is considered for the numerical study to demonstrate the efficacy of the theory. The results obtained using the present theory are discussed critically with those of other theories and are found to agree well with the exact elasticity results.  相似文献   

17.
《Composites Part B》2003,34(1):67-82
A higher order zig-zag plate theory is developed to refine the predictions of the mechanical, thermal, and electric behaviors partially coupled. The in-plane displacement fields are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field through the thickness. Smooth parabolic distribution through the thickness is assumed in the out-of-plane displacement in order to consider transverse normal deformation and stress. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses. Artificial shear correction factors are not needed in the present formulation. Thus the proposed theory has only seven primary unknowns and they do not depend upon the number of layers. Through the numerical examples of partially coupled analysis, the accuracy and efficiency of the present theory are demonstrated. The present theory is suitable in the predictions of deformation and stresses of thick smart composite plate under mechanical, thermal, and electric loads combined.  相似文献   

18.
《Composites Science and Technology》2006,66(11-12):1575-1587
An enhanced first-order shear deformation theory has been developed for the deformation and stress recovery of laminated and sandwich plates. Based on the definition of Reissner–Mindlin’s plate theory, the relationships between three-dimensional and first-order shear deformation theories have been derived. It is assumed that the displacements, in-plane strains and stresses of Reissner–Mindlin’s plate theory can approximate those of three-dimensional theory, in the least-square sense. Their relationships have been systematically established and verified through the strain energy transformation. These relationships provide the closed-form recovering relations for three-dimensional variables expressed in terms of the variables of Reissner–Mindlin’s plate theory. An efficient higher-order plate theory is utilized to obtain the in-plane warping functions. Comparisons of deflection, stresses and shear correction factors of both laminated and sandwich plates using the present theory are made with the original first-order shear deformation theory and three-dimensional exact solutions.  相似文献   

19.
《Composite Structures》1987,7(3):161-177
A new higher order shear deformation theory of laminated composite plates is developed. The basic displacement variables in this theory are two partial normal displacements and two in-plane displacement parameters. The governing equations are presented in the form of four simultaneous partial differential equations. The shear deformation theories of Bhimareddy and Stevens, and of Reddy are special cases of this formulation. In their models, transverse shear strains will become zero at points in the plate where displacements are constrained to be zero such as those on fixed edges. This limitation has been overcome in the present formulation.  相似文献   

20.
In this article, based on the global-local theory, a model for a composite laminated Reddy plate of new modified couple-stress theory is developed for the first time. This model satisfies free surface conditions and the geometric and stresses continuity conditions at interfaces. Differing from existing modified couple-stress theory, an anisotropic constitutive relation is suggested. There is only one micro material characteristic length constant in each layer of the composite laminated plate. Principle of virtual work is employed to derive the equilibrium equations and the corresponding boundary conditions. With the example of a cross-ply simple-supported Reddy plate subjected to the bending load q0 = sin?(πx/L)sin?(πy/L), the transverse shear stresses at interfaces are addressed. Additionally, the numerical results show that the present plate model can capture the scale effect, especially the scale effect of the transverse shear stresses at interfaces of the composite laminated plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号