首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triclocarban (TCC) is an antibacterial compound commonly detected in biosolids at parts-per-million concentrations. Approximately half of the biosolids produced in the United States are land-applied, resulting in a systematic release of TCC into the soil environment. The extent of biosolids-borne TCC environmental transport and potential human/ecological exposures will be greatly affected by its bioavailability and the rate of degradation in amended soils. To investigate these factors, radiolabeled TCC (14C-TCC) was incorporated into anaerobically digested biosolids, amended to two soils, and incubated under aerobic conditions. The evolution of 14CO2 (biodegradation) and changes in chemical extractability (bioavailability) was measured over time. Water extractable TCC over the study period was low and significantly decreased over the first 3 weeks of the study (from 14% to 4% in a fine sand soil and from 3 to < 1% in a silty clay loam soil). Mineralization (i.e. ultimate degradation), as measured by evolution of 14CO2, was < 4% over 7.5 months. Methanol extracts of the amended soils were analyzed by radiolabel thin-layer chromatography (RAD-TLC), but no intermediate degradation products were detected. Approximately 20% and 50% of the radioactivity in the amended fine sand and silty clay loam soils, respectively, was converted to bound residue as measured by solids combustion. These results indicate that biosolids-borne TCC becomes less bioavailable over time and biodegrades at a very slow rate.  相似文献   

2.
Mercury contaminated stockpiles of biosolids (8.4 mg kg− 1 Hg) from Melbourne Water's Western Treatment Plant (MW-WTP) were investigated to evaluate the possibility of their Hg chelate-assisted phytoextraction. The effects of ammonium thiosulphate (NH4)2S2O3, cysteine (Cys), nitrilotriacetic acid (NTA), and potassium iodide (KI) were studied to mobilize Hg and to increase its uptake in plant shoots. Three plant species were selected for this study, one herbaceous and two grasses: Atriplex codonocarpa, Austrodanthonia caespitosa and Vetiveria zizanioides. KI proved to be the best candidate for Hg phytostabilization in biosolids because it facilitated the concentration of this metal mainly in roots. (NH4)2S2O3 was shown to be the most effective chelating agent among those tested for Hg phytoextraction as it allowed the highest translocation of Hg into the above-ground tissues of the selected plant species. The phytoextraction conditions using A. caespitosa as the best performing plant species were optimized at an (NH4)2S2O3 concentration of 27 mmol kg− 1 and contact time with biosolids of seven day. Monitoring of the Hg concentration in biosolids and in leachate water during a 9-day treatment revealed that the biosolids Hg concentration decreased significantly after the first day of treatment and then it decreased only slightly with time reaching a value of 5.6 mg kg− 1 Hg at the end of the 9-day period. From the corresponding results obtained for the leachate water, it was suggested that a relatively large fraction of Hg (0.7 mg kg− 1 Hg) was promptly mobilized and consequently the plants were able to take up the metal and translocate it into shoots.  相似文献   

3.
Lopes SI  Wang X  Capela MI  Lens PN 《Water research》2007,41(11):2379-2392
This study investigated the effect of the COD/SO42− ratio (4 and 1) and the sulfide concentration on the performance of thermophilic (55 °C) acidifying (pH 6) upflow anaerobic sludge bed reactors fed with sucrose at an organic loading rate of 4.5 g COD lreactor−1 day−1. Sulfate reduction efficiencies amounted to 65% and 25-35% for the COD/SO42− ratios of 4 and 1, respectively. Acidification was complete at all the tested conditions and the electron flow was similar at the two COD/SO42− ratios applied. The stepwise decrease of the sulfide concentrations in the reactors with a COD/SO42− ratio of 1 by N2 stripping caused an immediate stepwise increase in the sulfate reduction efficiencies, indicating a reversible inhibition by sulfide. The degree of reversibility was, however, affected by the growth conditions of the sludge. Acidifying sludge pre-grown at pH 6, at a COD/SO42− ratio of 9 and exposed for 150 days to 115 mg l−1 sulfide, showed a slower recovery from the sulfide inhibition than a freshly harvested sludge from a full scale treatment plant (pH 7 and COD/SO42−=9.5) exposed for a 70 days to 200 mg l−1 sulfide. In the latter case, the decrease of the sulfide concentration from 200 to 45 mg l−1 (35 mg l−1 undissociated sulfide) by N2 stripping caused an immediate increase of the sulfate reduction efficiency from 35% to 96%.  相似文献   

4.
Acidification of freshwaters is a global phenomenon, occurring both through natural leaching of organic acids and through human activities from industrial emissions and mining. The West Coast of the South Island, New Zealand, has both naturally acidic and acid mine drainage (AMD) streams enabling us to investigate the response of fish communities to a gradient of acidity in the presence and absence of additional stressors such as elevated concentrations of heavy metals. We surveyed a total of 42 streams ranging from highly acidic (pH 3.1) and high in heavy metals (10 mg L1 Fe; 38 mg L1 Al) to circum-neutral (pH 8.1) and low in metals (0.02 mg L1 Fe; 0.05 mg L1 Al). Marked differences in pH and metal tolerances were observed among the 15 species that we recorded. Five Galaxias species, Anguilla dieffenbachii and Anguillaaustralis were found in more acidic waters (pH< 5), while bluegill bullies (Gobiomorphus hubbsi) and torrentfish (Cheimarrichthys fosteri) were least tolerant of low pH (minimum pH 6.2 and 5.5, respectively). Surprisingly, the strongest physicochemical predictor of fish diversity, density and biomass was dissolved metal concentrations (Fe, Al, Zn, Mn and Ni) rather than pH. No fish were detected in streams with dissolved metal concentrations > 2.7 mg L1 and nine taxa were only found in streams with metal concentrations < 1 mg L1. The importance of heavy metals as critical drivers of fish communities has not been previously reported in New Zealand, although the mechanism of the metal effects warrants further study. Our findings indicate that any remediation of AMD streams which seeks to enable fish recolonisation should aim to improve water quality by raising pH above ≈ 4.5 and reducing concentrations of dissolved Al and Fe to < 1.0 mg L1.  相似文献   

5.
Lousal mine is a typical “abandoned mine” with all sorts of problems as consequence of the cessation of the mining activity and lack of infrastructure maintenance. The mine is closed at present, but the heavy metal enriched tailings remain at the surface in oxidizing conditions. Surface water and stream sediments revealed much higher concentrations than the local geochemical background values, which the “Contaminated Sediment Standing Team” classifies as very toxic. High concentrations of Cu, Pb, Zn, As, Cd and Hg occurred within the stream sediments downstream of the tailings sites (up to: 817 mg kg−1 As, 6.7 mg kg−1 Cd, 1568 mg kg−1 Cu, 1059 mg kg−1 Pb, 82.4 mg kg−1 Sb, 4373 mg kg−1 Zn). The AMD waters showed values of pH ranging from 1.9 to 2.9 and concentrations of 9249 to 20,700 mg L−1 SO4−2, 959 to 4830 mg L−1 Fe and 136 to 624 mg L−1 Al. Meanwhile, the acid effluents and mixed stream waters also carried high contents of SO42−, Fe, Al, Cu, Pb, Zn, Cd, and As, generally exceeding the Fresh Water Aquatic Life Acute Criteria. Negative impacts in the diatom communities growing at different sites along a strong metal pollution gradient were shown through Canonical Correspondence Analysis: in the sites influenced by Acid Mine Drainage (AMD), the dominant taxon was Achnanthidium minutissimum. However, Pinnularia acoricola was the dominant species when the environmental conditions were extremely adverse: very low pH and high metal concentrations (sites 2 and 3). Teratological forms of Achnanthidium minutissimum (Kützing) Czarnecki, Brachysira vitrea (Grunow) Ross in Hartley, Fragilaria rumpens (Kützing) G. W. F. Carlson and Nitzschia hantzschiana Rabenhorst were found. A morphometric study of B. vitrea showed that a decrease in size was evident at the most contaminated sites. These results are evidence of metal and acidic pollution.  相似文献   

6.
Cassidy DP  Belia E 《Water research》2005,39(19):4817-4823
The formation and performance of granular sludge was studied in an 8 l sequencing batch reactor (SBR) treating an abattoir (slaughterhouse) wastewater. Influent concentrations averaged 1520 mg l−1 volatile suspended solids (VSS), 7685 mg l−1 Chemical oxygen demand (COD), 1057 mg l−1 total kjeldahl nitrogen (TKN), 217 mg l−1 total P. The COD loading was 2.6 kg m−3 d−1. The SBR was seeded with flocculating sludge from a SBR with an 1 h settle time, but granules developed within 4 days by reducing the settle time to 2 min. The SBR cycle also had 120 min mixed (anaerobic) fill, 220 min aerated react, and 18 min draw/idle. The granules had a mean diameter of 1.7 mm, a specific gravity of 1.035, a density of 62 g VSS l−1, a zone settling velocity (ZSV) of 51 m h−1, and a sludge volume index (SVI) of 22 ml g−1. Without optimizing process conditions, removal of COD and P were over 98%, and removal of N and VSS were over 97%. Nitrification and denitrification occurred simultaneously during react. The results indicate that conventional SBRs treating wastewaters with flocculating sludge can be converted to granular SBRs by reducing the settle time.  相似文献   

7.
Flocculant blocks are commonly used as a component of (passive) water treatment systems to reduce suspended sediment loads in the water column. This study investigated the potential for aquatic biological impacts of a flocculant block formulation that contained an anionic polyacrylamide (PAM) active ingredient and a polyethylene glycol (PEG) based carrier. The toxicity of the whole flocculant block was assessed and the individual components of the block were also tested separately. Five Northern Australian tropical freshwater species (i.e. Chlorella sp. Lemna aequinoctialis, Hydra viridissima, Moinodaphnia macleayi and Mogurnda mogurnda) were exposed to a range of concentrations of the whole flocculant block, and of the individual PAM and PEG components. The concentration of Total Organic Carbon (TOC) in solution was used to provide a measure of the total amount of PAM and PEG present. An extremely wide range of toxic responses were found, with the flocculant blocks being essentially non-toxic to the duckweed, fish and algae (IC50 > 1880 mg l−1 C TOC, IC10 > 460 mg l−1 C TOC), slightly toxic to the hydra (IC50 = 610-2180 mg l−1 C TOC, IC10 = 80-60 mg l−1 C TOC) and significantly more toxic to the cladoceran (IC50 = 10 mg l−1 C TOC, IC10 = 4 mg l−1 C TOC). More detailed investigation of the two components indicated that the PAM was the primary “toxicant” in the flocculant blocks. Derived Protective Concentrations (PCs) for the flocculant blocks, expressed as equivalent TOC concentrations, were found to be lower than typically measured natural environmental concentrations of TOC. It will thus be possible to use TOC as measure of the concentration of PAM only in those situations where lower levels of ecosystem protection (i.e. higher PCs) are applicable.  相似文献   

8.
A full-scale passive treatment system (PTS) was commissioned in 2003 to treat two net-acidic coal mine water discharges in the Durham coalfield, UK. The principal aim of the PTS was to decrease concentrations of iron (< 177 mg L1) and aluminium (< 85 mg L1) and to increase pH (> 3.2) and alkalinity (≥ 0 mg L1 CaCO3 eq). Secondary objectives were to decrease zinc (< 2.8 mg L1), manganese (< 20.5 mg L1) and sulfate (< 2120 mg L1). Upon treatment, water qualities were improved by 84% in the case of Fe, 87% Al, 83% acidity, 51% Zn, 23% Mn and 29% SO42. Alkalinity (74%) and pH (95% as H+) were increased. Area adjusted removal rates (Fe = 1.49 ± 0.66 g d1 m2; acidity = 6.7 ± 4.9 g d1 m2) were low compared to design criteria, mainly due to load limitation. Disregarding seasonality effects, acidity removal and effluent pH were stable over time. A substantial temporal decrease in calcium and alkalinity generation suggests that limestone is increasingly armoured. Once pH is no longer buffered by the carbonate system, metals could be remobilized, putting treatment efficiency at risk.  相似文献   

9.
Trace metals were analysed in polychaetes collected on Polarstern cruise ANT XXI/2 (2003/04) to the Weddell Sea. Pb concentrations were largely less than 1.3 mg kg−1 DW in all samples analysed. Statistical results indicate that the accumulated Cd, Cu and Zn concentrations are related to the feeding guild to which the animals are belonging. Relatively low Cd and Cu concentrations are found in macrophagous carnivores and relatively high concentrations in microphagous detritus feeders. The relationship between Zn concentrations and the feeding guilds of polychaetes is reverse. Cd concentrations range from (median values and interquantile ranges in brackets) 2.6 (1.5-3.2) mg kg−1 DW in the carnivorous Trypanosyllis gigantea to 133 (37-176) mg kg−1 in the microphagous detritus feeder Lanicides bilobata; Cu concentrations from 16 (11-19) mg kg−1 in the carnivorous Antarctinoe spicoides to 40 (23-68) mg kg−1 in the microphagous detritus feeder Phyllocomus crocea and Zn from 89 (69-97) mg kg−1 in the microphagous detritus feeder Isocirrus yungi to 396 (372-404) mg kg−1 in the carnivorous Aglaophamus trissophyllus. Ni is ranging from 3.7 (1.8-6.0) mg kg−1 in Polyeunoa laevis to 34 (20-41) mg kg−1 in A. spicoides, but no significant differences are obvious regarding the feeding guilds. Since information on metals in Antarctic polychaetes is almost completely lacking, our results suggest further studies to clarify the role of feeding in the bioaccumulation of metals in this ecologically important taxonomic group.  相似文献   

10.
Aerobic granulation of activated sludge was achieved in a pilot-scale sequencing batch reactor (SBR) for the treatment of low-strength municipal wastewater (<200 mg L−1 of COD, chemical oxygen demand). The volume exchange ratio and settling time of an SBR were found to be two key factors in the granulation of activated sludge grown on the low-strength municipal wastewater. After operation of 300 days, the mixed liquor suspended solids (MLSS) concentration in the SBR reached 9.5 g L−1 and consisted of approximate 85% granular sludge. The average total COD removal efficiency kept at 90% and NH4+-N was almost completely depleted (∼95%) after the formation of aerobic granules. The granules (with a diameter over 0.212 mm) had a diameter ranging from 0.2 to 0.8 mm and had good settling ability with a settling velocity of 18-40 m h−1. Three bacterial morphologies of rod, coccus and filament coexisted in the granules. Mathematical modeling was performed to get insight into this pilot-scale granule-based reactor. The modified IWA activated sludge model No 3 (ASM3) was able to adequately describe the pilot-scale SBR dynamics during its cyclic operation.  相似文献   

11.
The aims of this study were to determine the factors which control metal and As phytoavailability in the different microenvironments (Sand Dunes, Salt Flat, Dry River and Shrubs) present at a Mediterranean salt marsh polluted by mining wastes. We performed a field study following a plot sampling survey. The analyses of soil parameters (pH, electrical conductivity (EC), organic carbon contents, etc.), total metal and As concentrations and their phytoavailability assessed with EDTA were related to each microenvironment and the corresponding plant species uptake. The averages of pH and EC were slightly alkaline (pH ≈ 7.5) and saline (≈ 2.2 to 17.1 dS m−1) respectively. The soil samples from the Salt Flat subzone showed the highest metal concentrations (e.g. 51 mg kg−1 Cd, 11,600 mg kg−1 Pb) while for As, the highest concentrations occurred in the Dry River (380 mg kg−1 As). The total metal and EDTA-extractable concentrations occurred as it follows: Salt Flat > Dry River > Degraded Dunes > Shrubs. In relation to plant metal and As accumulation, the highest root concentrations were obtained in the species from the Salt Flat subzone: ~ 17 mg kg−1 As, ~ 620 mg kg−1 Pb, for both, Juncus maritimus and Arthrocnemum macrostachyum. However the highest metal and As shoot concentrations occurred in species from the Sand Dunes: ~ 23 mg kg−1 As ~ 270 mg kg−1 Pb for Dittrichia viscosa; ~ 23 mg kg−1 As, ~ 390 mg kg−1 Zn for Crucianella maritima. The occurrence of edaphic gradients including salinity and texture determined the vegetation distribution. However, it cannot be concluded that there was a disturbance due to metal(loid)s soil concentrations in terms of vegetation composition except in the Degraded Dunes and Dry River. The higher EDTA-extractable concentrations were coincidental with the most saline soils but this did not result in higher metal(loid)s plant accumulation.  相似文献   

12.
Ying-Xue Sun  Jie Tian 《Water research》2009,43(9):2391-18754
The effect of bromide ion on the formation and speciation of trihalomethanes (THMs) and haloacetic acids (HAAs) during the chlorination of biologically treated wastewaters was investigated. The experimental results showed that the formation of total THMs and total HAAs during chlorine disinfection increased with increasing bromide levels in wastewater. The formation of CHBr3 increased nearly linearly with increasing bromide ion levels, while CHCl2Br and CHClBr2 increased with increasing bromide concentration from 0 to 3.2 mg L−1 and thereafter remained constant or slightly decreased. Increasing initial bromide levels up to 12.8 mg L−1 resulted in sharp decrease of the concentration of CHCl3 and chloro- HAAs. The mixed bromochloro- HAAs and bromo-only species replaced chloro- HAAs as the dominated species of HAA with increasing bromide levels. The distribution of monohalogenated, dihalogenated and trihalogenated species of HAAs in chlorinated wastewater at high concentration of bromide (>2 mg L−1) is different from that of drinking/natural water. The values of the bromine incorporation factors, n (Br) and n′ (Br), increased with increasing bromide concentration and remained constant or slightly decreased with increasing contact time under the studied range of bromide ion concentrations during chlorination. Moreover, the bromine incorporation into THMs was higher than that of HAAs with bromide levels ranging from 1.0 to 12.8 mg L−1, indicating the dissimilar formation mechanisms of THMs and HAAs involving bromide.  相似文献   

13.
In the present study the degradation kinetics and mineralization of diclofenac (DCF) by the TiO2 photocatalysis were investigated in terms of UV absorbance and COD measurements for a wide range of initial DCF concentrations (5-80 mg L−1) and photocatalyst loadings (0.2-1.6 g TiO2 L−1) in a batch reactor system. A set of bioassays (Daphnia magna, Pseudokirchneriella subcapitata and Artemia salina) was performed to evaluate the potential detoxification of DCF. A pseudo-first-order kinetic model was found to fit well most of the experimental data, while at high initial DCF concentrations (40 and 80 mg L−1) and at 1.6 g TiO2 L−1 photocatalyst loading a second-order kinetic model was found to fit the data better. The toxicity of the treated DCF samples on D. magna and P. subcapitata varied during the oxidation, probably due to the formation of some intermediate products more toxic than DCF. Unicellular freshwater algae was found to be very sensitive to the treated samples as well as the results from D. magna test were consistent to those of algae tests. A. salina was not found to be sensitive under the investigated conditions. Finally, UV absorbance analysis were found to be an useful tool for a fast and easy to perform measurement to get preliminary information on the organic intermediates that are formed during oxidation and also on their disappearance rate.  相似文献   

14.
Dong-Hoon Kim  Sae-Eun Oh 《Water research》2010,44(10):3093-12378
The individual effects of alkaline (pH 8-13) and ultrasonic (3750-45,000 kJ/kg TS) pretreatments on the disintegration of sewage sludge were separately tested, and then the effect of combining these two methods at different intensity levels was investigated using response surface methodology (RSM). In the combined pretreatment, ultrasonic treatment was applied to the alkali-pretreated sludge. While the solubilization (SCOD/TCOD) increase was limited to 50% in individual pretreatments, it reached 70% in combined pretreatment, and the results clearly showed that preconditioning of sludge at high pH levels played a crucial role in enhancing the disintegration efficiency of the subsequent ultrasonic pretreatment. By applying regression analysis, the disintegration degree (DD) was fitted based on the actual value to a second order polynomial equation: Y = −172.44 + 29.82X1 + 5.30 × 10−3X2 − 7.53 × 10−5X1X2 − 1.10X12 − 1.043 × 10−7X22, where X1, X2, and Y are pH, specific energy input (kJ/kg TS), and DD, respectively. In a 2D contour plot describing the tendency of DD with respect to pH and specific energy input, it was clear that DD increased as pH increased, but it seemed that DD decreased when the specific energy input exceeded about 20,000 kJ/kg TS. This phenomenon tells us that there exists a certain point where additional energy input is ineffective in achieving further disintegration. A synergetic disintegration effect was also found in the combined pretreatment, with lower specific energy input in ultrasonic pretreatment yielding higher synergetic effect. Finally, in order to see the combined pretreatment effect in continuous operation, the sludge pretreated with low intensity alkaline (pH 9)/ultrasonic (7500 kJ/kg TS) treatment was fed to a 3 L of anaerobic sequencing batch reactor after 70 days of control operation. CH4 production yield significantly increased from 81.9 ± 4.5 mL CH4/g CODadded to 127.3 ± 5.0 mL CH4/g CODadded by pretreatment, and this enhanced performance was closely related to the solubilization increase of the sludge by pretreatment. However, enhanced anaerobic digestion resulted in 20% higher soluble N concentration in the reactor, which would be an additional burden in the subsequent nitrogen removal system.  相似文献   

15.
Wan TJ  Shen SM  Siao SH  Huang CF  Cheng CY 《Water research》2011,45(19):6301-6307
Backside grinding (BG) wastewater treatment typically requires large quantities of chemicals, i.e. polyaluminum chloride (PAC) coagulant and produces considerable amounts of sludge, increasing the loading and cost of subsequent sludge treatment and disposal processes. This study investigated the effects of the addition of magnetic seeds (FeO*Fe2O3) of selected particle sizes and of optimized combinations of magnetic seeds and PAC on the aggregation of silica nanoparticles from BG wastewater and on the sedimentation time at various pH values (5-9). The results show that the turbidity of BG wastewater was significantly reduced by the magnetic aggregation treatment. The dosage of PAC combined with 2.49 g L−1 or 1.24 g L−1 of magnetic seeds was reduced by 83% (from 60 to 10 mg L−1) compared to the conventional process of using only PAC as a coagulant. The turbidity of the BG wastewater, initially 1900-2500 NTU, could also be successfully decreased about to 23 NTU by the addition of 3.74 g L−1 magnetite (FeO*Fe2O3) only at pH 5 with an applied magnetic field of 1000 G. Different coagulation conditions using magnetic seeds combined with coagulant resulted in different aggregation performances. The treatment performance was more effective by using two-stage dosing, in which magnetic seeds and PAC were added separately, than that with one-stage dosing, where the magnetic seeds and PAC were added simultaneously during rapid mixing. The two-stage dosing allowed for a reduction in the optimum dosage of magnetic seeds from 3.74 g L−1 to 2.49 g L−1 or 1.24 g L−1 without affecting performance when coupled with 0.01 g L−1 of PAC coagulant. The developed method effectively reduced the production of waste sludge.  相似文献   

16.
Addition of different forms of nitrogen fertilizer to cultivated soil is known to affect carbon dioxide (CO2) and nitrous oxide (N2O) emissions. In this study, the effect of urea, wastewater sludge and vermicompost on emissions of CO2 and N2O in soil cultivated with bean was investigated. Beans were cultivated in the greenhouse in three consecutive experiments, fertilized with or without wastewater sludge at two application rates (33 and 55 Mg fresh wastewater sludge ha− 1, i.e. 48 and 80 kg N ha− 1 considering a N mineralization rate of 40%), vermicompost derived from the wastewater sludge (212 Mg ha− 1, i.e. 80 kg N ha− 1) or urea (170 kg ha− 1, i.e. 80 kg N ha− 1), while pH, electrolytic conductivity (EC), inorganic nitrogen and CO2 and N2O emissions were monitored. Vermicompost added to soil increased EC at onset of the experiment, but thereafter values were similar to the other treatments. Most of the NO3 was taken up by the plants, although some was leached from the upper to the lower soil layer. CO2 emission was 375 C kg ha− 1 y− 1 in the unamended soil, 340 kg C ha− 1 y− 1 in the urea-amended soil and 839 kg ha− 1 y− 1 in the vermicompost-amended soil. N2O emission was 2.92 kg N ha− 1 y− 1 in soil amended with 55 Mg wastewater sludge ha− 1, but only 0.03 kg N ha− 1 y− 1 in the unamended soil. The emission of CO2 was affected by the phenological stage of the plant while organic fertilizer increased the CO2 and N2O emission, and the yield per plant. Environmental and economic implications must to be considered to decide how many, how often and what kind of organic fertilizer could be used to increase yields, while limiting soil deterioration and greenhouse gas emissions.  相似文献   

17.
Tao Yu 《Water research》2010,44(9):2823-2830
Three submerged membrane bioreactors (MBRs) were operated continuously for 230 days by feeding with synthetic inorganic wastewater (NH4+-N, 100 mg L−1) under different solids retention times (SRTs. M30d, 30 days; M90d, 90 days; Minfinite, no sludge purge) to examine the influence of SRT on nitrification performance and microbial characteristics. All the reactors could oxidize NH4+-N to NO3-N effectively without accumulation of NO2-N. M30d with the shortest SRT showed significantly higher specific ammonium oxidizing rate (SAOR, 0.22 kg NH4+-N kg−1 MLSS day−1) and specific nitrate forming rate (SNFR, 0.13 kg NO3-N kg−1 MLSS day−1) than the other two MBRs (0.12-0.14 kg NO3-N kg−1 MLSS day−1 and 0.042-0.068 kg NO3-N kg−1 MLSS day−1, respectively). Short SRT led to low extracellular polymeric substances (EPS) concentration and long operating cycle. The nitrite oxidizing bacteria (NOB) ratios by both the fluorescence in situ hybridization (FISH) (3.6% for M30d and 2.1-2.2% for M90d and Minfinite) and MPN (1.4 × 107 cells g−1 MLSS for M30d and 6.2 × 105 and 2.7 × 104 cells g−1 MLSS for M90d and Minfinite) analyses showed that M30d favored the accumulation of NOB, which was in accordance with the SNFR result. However, the ammonia oxidizing bacteria (AOB) ratios (3.5%, 3.2% and 4.9% for M30d, M90d and Minfinite) were not in accordance with the SAOR result. PCR-DGGE, clone library and FISH results showed that the fast-growing Nitrosomonas and Nitrobacter sp. were the dominant AOB and NOB, respectively for M30d, while considerable slow-growing Nitrosospira and Nitrospira sp. existed in Minfinite, which might be an important reason why Minfinite had a low SAOR and SNFR.  相似文献   

18.
Pilot-scale struvite crystallization tests using anaerobic effluent from potato processing industries were performed at three different plants. Two plants (P1 & P2) showed high phosphate removal efficiencies, 89 ± 3% and 75 ± 8%, resulting in final effluent levels of 12 ± 3 mg PO43−-P L−1 and 11 ± 3 mg PO43−-P L−1, respectively. In contrast, poor phosphate removal (19 ± 8%) was obtained at the third location (P3). Further investigations at P3 showed the negative effect of high Ca2+/PO43−-P molar ratio (ca. 1.25 ± 0.11) on struvite formation. A full-scale struvite plant treating anaerobic effluent from a dairy industry showed the same Ca2+ interference. A shift in the influent Ca2+/PO43−-P molar ratio from 2.69 to 1.36 resulted in average total phosphorus removal of 78 ± 7%, corresponding with effluent levels of 14 ± 4 mg Ptotal L−1 (9 ± 3 mg PO43−-P L−1). Under these conditions high quality spherical struvite crystals of 2-6 mm were produced.  相似文献   

19.
The plants grown in seleniferous soils constitute a major source of toxic selenium levels in the food chain of animals and human beings. Greenhouse and field experiments were conducted to study selenium concentrations of weeds, forages and cereals grown on seleniferous soils located between 31.0417° to 31.2175° N and 76.1363° to 76.4147° E in northwestern India. Eleven winter season (November-April) weed plants were grown in the greenhouse in a soil treated with different levels of selenate-Se. Selenium concentrations of weed plants increased progressively with the levels of selenate-Se in soil. The highest Se concentration was recorded by Silene gallica (246 mg kg− 1) and the lowest by Avena ludoviciana (47 mg kg− 1) at 2.5 mg Se kg− 1 soil. A.ludoviciana and Spergula arvensis proved highly tolerant to the presence of 1.25 and 2.5 mg selenate-Se kg− 1 soil and the remaining weeds were sensitive to Se. Dry matter yield of Se-sensitive weed plants was 25 to 62% of the yield in the no-Se control at 1.25 mg selenate-Se kg− 1 and 6 to 40% at 2.5 mg selenate-Se kg− 1 soil. Other symptoms like change in leaf colour and size, burning of leaf tips and margins, and delayed flowering were also observed due to Se. Dry matter yield of Se-sensitive weed plants expressed as percentage of yield in the no-Se control at both the Se levels was inversely correlated with their Se content (r = − 0.731, p < 0.01, N = 17). Among the weed plants grown in seleniferous soils under field situations, Mentha longifolia accumulated the highest Se (365 mg kg− 1) and Phalaris minor the lowest (34 mg kg− 1). Among agricultural crops grown on a naturally contaminated soil in the greenhouse, Se concentrations were the highest for oilseed crops (19-29 mg kg− 1), followed by legumes (6-13 mg kg− 1) and cereals (2-18 mg kg− 1). Helianthus annuus among the oilseed crops, A.ludoviciana among the winter season weeds, M.longifolia among the summer season (May-October) weeds and Cirsium arvense among the perennial weeds can be used for phytoremediation of seleniferous soils as these accumulate the highest amounts of Se.  相似文献   

20.
This work proposes an efficient combined treatment for the decontamination of a pesticide-containing wastewater resulting from phytopharmaceutical plastic containers washing, presenting a moderate organic load (COD = 1662-1960 mg O2 L−1; DOC = 513-696 mg C L−1), with a high biodegradable organic carbon fraction (81%; BOD5 = 1350-1600 mg O2 L−1) and a remaining recalcitrant organic carbon mainly due to pesticides. Nineteen pesticides were quantified by LC-MS/MS at concentrations between 0.02 and 45 mg L−1 (14-19% of DOC). The decontamination strategy involved a sequential three-step treatment: (a) biological oxidation process, leading to almost complete removal of the biodegradable organic carbon fraction; (b) solar photo-Fenton process using CPCs, enhancing the bio-treated wastewater biodegradability, mainly due to pesticides degradation into low-molecular-weight carboxylate anions; (c) and a final polishing step to remove the residual biodegradable organic carbon, using a biological oxidation process. Treatment performance was evaluated in terms of mineralization degree (DOC), pesticides content (LC-MS/MS), inorganic ions and low-molecular-weight carboxylate anions (IC) concentrations. The estimated phototreatment energy necessary to reach a biodegradable wastewater, considering pesticides and low-molecular-weight carboxylate anions concentrations, Zahn-Wellens test and BOD5/COD ratio, was only 2.3 kJUV L−1 (45 min of photo-Fenton at a constant solar UV power of 30 W m−2), consuming 16 mM of H2O2, which pointed to 52% mineralization and an abatement higher than 86% for 18 pesticides. The biological oxidation/solar photo-Fenton/biological oxidation treatment system achieved pesticide removals below the respective detection limits and 79% mineralization, leading to a COD value lower than 150 mg O2 L−1, which is in agreement with Portuguese discharge limits regarding water bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号