首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultra-low sulfur diesel, bi oesel and their blends, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev/min. Blended fuels containing 19.6%, 39.4%, 59.4% and 79.6% by volume of biodiesel, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. Biodiesel used in this study was converted from waste cooking oil.The following results are obtained with an increase of biodiesel in the fuel. The brake specific fuel consumption and the brake thermal efficiency increase. The HC and CO emissions decrease while NOx and NO2 emissions increase. The smoke opacity and particulate mass concentrations reduce significantly at high engine load. In addition, for submicron particles, the geometry mean diameter of the particles becomes smaller while the total number concentration increases. For the unregulated gaseous emissions, generally, the emissions of formaldehyde, 1,3-butadiene, toluene, xylene decrease, however, acetaldehyde and benzene emissions increase.The results indicate that the combination of ultra-low sulfur diesel and biodiesel from waste cooking oil gives similar results to those in the literature using higher sulfur diesel fuels and biodiesel from other sources.  相似文献   

2.
Euro V diesel fuel, pure biodiesel and biodiesel blended with 5%, 10% and 15% of ethanol or methanol were tested on a 4-cylinder naturally-aspirated direct-injection diesel engine. Experiments were conducted under five engine loads at a steady speed of 1800 r/min. The study aims to investigate the effects of the blended fuels on reducing NOx and particulate. On the whole, compared with Euro V diesel fuel, the blended fuels could lead to reduction of both NOx and PM of a diesel engine, with the biodiesel-methanol blends being more effective than the biodiesel-ethanol blends. The effectiveness of NOx and particulate reductions is more effective with increase of alcohol in the blends. With high percentage of alcohol in the blends, the HC, CO emissions could increase and the brake thermal efficiency might be slightly reduced but the use of 5% blends could reduce the HC and CO emissions as well. With the diesel oxidation catalyst (DOC), the HC, CO and particulate emissions can be further reduced.  相似文献   

3.
The role of nanoparticles and nanofluid additives for biodiesel has gained consistent position in the current trend as they contribute to increase the performance of the engine with lower emission. In addition, additives also help to increase the engine reliability and lifespan. In this work, the effects of canola biodiesel blends of 20% proportions with diesel were investigated at 100% of engine load. The fuel is tested in a multi-cylinder water-cooled direct ignition (DI) engine. There are numerous notable works on nanofluid; however, the addition of TiO2 nanoparticle as additive to produce canola biodiesel fuel is very limited. With the addition of the TiO2 nanoparticle on Canola biodiesel blend in the DI engine, the exhaust property of gases such as CO, HC and NOX is reduced. Furthermore, the combustion characteristics of the engine are improved. The canola biodiesel blends also resulted in lower NOx emission as well as low smoke.  相似文献   

4.
A study of engine performance characteristics and both of regulated (CO, HC, NOx, and smoke) and unregulated (ultrafine particle number, mass concentrations and size distribution) emissions for a turbocharged diesel engine fueled with conventional diesel, gas-to-liquid (GTL) and dimethyl ether (DME) fuels respectively at different engine loads and speeds have been carried out. The results indicated that fuel components significantly affected the engine performance and regulated/unregulated emissions. GTL exhibited almost the same power and torque output as diesel, while improved fuel economy. GTL significantly reduced regulated emissions with average reductions of 21.2% in CO, 15.7% in HC, 15.6% in NOx and 22.1% in smoke in comparison to diesel, as well as average reductions in unregulated emissions of total ultrafine particle number (Ntot) and mass (Mtot) emissions by 85.3% and 43.9%. DME can significantly increase torque and power, compared with the original diesel engine, as well as significantly reduced regulated emissions of 40.1% in HC, 48.2% in NOx and smoke free throughout all the engine conditions. However, Ntot for DME is close to that for diesel. The reason is that the accumulation mode particle number emissions for DME are very low due to the characteristics of oxygen content and no C-C bond, which promotes the processes of nucleation and condensation of the semi-volatile compounds in the exhaust gas, as a result, a lot of nucleation mode particles produce.  相似文献   

5.
This study investigates the biodiesel from Deccan hemp oil and its blends for the purpose of fuelling diesel engine. The performance and emission characteristics of Deccan hemp biodiesel are estimated and compared with diesel fuel. The experimental investigations are carried out with different blends of Deccan hemp biodiesel. Results show that brake thermal efficiency is improved significantly by 4.15% with 50 BDH when compared with diesel fuel. The Deccan hemp biodiesel reduces NOx, HC and CO emission along with a marginal increase in CO2 and smoke emissions with an increase in the biodiesel proportion in the diesel fuel. The improvement in heat release rates shows an increase in the combustion rate with different percentage blends of Deccan hemp biodiesel. From the engine test results, it has been established that 30–50 BDH of Deccan hemp biodiesel can be substituted for diesel.  相似文献   

6.
An experimental investigation of diesel engine using cottonseed oil biodiesel and its blends with exhaust gas recirculation (EGR) techniques has been carried out. An optimum nozzle opening pressure of 250 bar and lower static injection timing of 20° before top dead centre (bTDC) are considered because it has been observed that these conditions only give minimum emissions. From the test results, it could be noted that there is an increasing trend of emission characteristics of HC, smoke density and NOx for both cold and hot EGR for all blends of fuel with respect to brake power. As compared with cold EGR, the hot EGR gives lower emissions at all loads. In hot EGR, among the blends, at no-load and full-load conditions, the B100 gives the highest reduction in NOx of 14.23% and 7.91%, respectively. However, the use of EGR leads to a rise in soot emission because of soot–NOx trade-off for both the cases.  相似文献   

7.
The present paper investigates the performance and emission characteristics of a single-cylinder, four-stroke diesel engine fuelled with Pongamia methyl ester (PME) and n-butanol, at different loading conditions. Two blends of n-butanol–PME (10% and 20% n-butanol with PME on a volumetric basis) were prepared. The experimental results showed a significant improvement in the brake thermal efficiency of the engine with the blends and were found to increase with increasing percentage of n-butanol in the blends. The blended fuels also show lower emission such as carbon monoxide (CO), oxides of nitrogen (NOx) and smoke opacity. However, unburned hydrocarbon (HC) emission was found to be slightly increased. Thus, it is concluded that the biodiesel with 20% n-butanol blend showed better results with respect to efficiency and emissions point of view compared with biodiesel.  相似文献   

8.
This study is aimed to investigate the combined application of fumigation methanol and a diesel oxidation catalyst for reducing emissions of an in-use diesel engine. Experiments were performed on a 4-cylinder naturally-aspirated direct-injection diesel engine operating at a constant speed of 1800 rev/min for five engine loads.The experimental results show that at low engine loads, the brake thermal efficiency decreases with increase in fumigation methanol; but at high loads, it slightly increases with increase in fumigation methanol. The fumigation method results in a significant increase in hydrocarbon (HC), carbon monoxide (CO), and nitrogen dioxide (NO2) emissions, but decrease in nitrogen oxides (NOx), smoke opacity and the particulate mass concentration. For the submicron particles, the total number of particles decreases. In all cases, there is little change in geometrical mean diameter of the particles. After catalytic conversion, the HC, CO, NO2, particulate mass and particulate number concentrations were significantly reduced at medium to high engine loads; while the geometrical mean diameter of the particles becomes larger. Thus, the combined use of fumigation methanol and diesel oxidation catalyst leads to a reduction of HC, CO, NOx, particulate mass and particulate number concentrations at medium to high engine loads.  相似文献   

9.
ABSTRACT

The use of lower alcohol (such as methanol and ethanol) blends in diesel engines shows problems like phase separation, miscibility, higher NOx emissions etc. The addition of higher alcohols with either diesel or biodiesel is relatively new and only a little information is available on the effects of higher alcohols. In this work, the engine performance and emissions characteristics were compared between the lower and higher alcohol blended with biodiesel. Conventional diesel and biodiesel are considered as the reference fuels. Three lower alcohols (methanol, ethanol and propanol) and three higher alcohols (butanol, pentanol and octanol) of each 50% by volume were mixed with biodiesel of 50% by volume. Experiments were conducted on a single cylinder compression ignition diesel engine by varying the load conditions at a constant speed. Engine performance and emissions of CO, CO2, NOx and HC were determined. The results are discussed.  相似文献   

10.
The effect of dimethyl carbonate (DMC) on the gaseous and particulate emissions of a diesel engine was investigated using Euro V diesel fuel blended with different proportions of DMC. Combustion analysis shows that, with the blended fuel, the ignition delay and the heat release rate in the premixed combustion phase increase, while the total combustion duration and the fuel consumed in the diffusion combustion phase decrease. Compared with diesel fuel, with an increase of DMC in the blended fuel, the brake thermal efficiency is slightly improved but the brake specific fuel consumption increases. On the emission side, CO increases significantly at low engine load but decreases at high engine load while HC decreases slightly. NOx reduces slightly but the reduction is not statistically significant, while NO2 increases slightly. Particulate mass and number concentrations decrease upon using the blended fuel while the geometric mean diameter of the particles shifts towards smaller size. Overall speaking, diesel-DMC blends lead to significant improvement in particulate emissions while the impact on CO, HC and NOx emissions is small.  相似文献   

11.
This article is an effort to address the need for a non-cooking oil-based biodiesel. Here, the experimental work is done on a single cylinder, direct injection CI engine using cashew nut shell oil biodiesel blends under constant speed. The cashew nut shell liquid (CNSL) biodiesel is blended with the diesel fuel and used as biodiesel blend. Blends used for testing are B20, B40 and B60. The effect of the fuels on engine power, brake thermal efficiency (BTE) and exhaust gas temperature was determined by performance tests. The influences of blends on CO, CO2, HC and NOx emissions were investigated by emission tests. The BTE values of biodiesel are closer to diesel. Compared to diesel, all the biodiesel blends gave lesser unburnt hydrocarbon (HC), carbon monoxide (CO) and smoke emissions. Slightly higher NOx emissions were found in CNSL biodiesel blends, which is typical of the other biodiesels.  相似文献   

12.
An experimental investigation is carried out to evaluate the effects of biodiesel–ethanol (BE) blends, biodiesel–dimethyl carbonate (BC) blends and biodiesel–diglyme (BG) blends on the combustion, performance and emission characteristics of a diesel engine operated at different loads and constant engine speed. Compared with biodiesel, for a specific engine load, the BE and BC blends have lower peak cylinder pressure at full load, while the BG blends show a slight variation in the peak cylinder pressure. In comparison with biodiesel, the BE, BC and BG blends have slightly higher brake thermal efficiency. Drastic reduction in smoke is observed with BE, BC and BG blends at higher engine loads. The BSNOx emissions are found slightly lower for BE, BC and BG blends almost at all loads. The BE and BC blends have a slight variation in the BSCO and BSHC emissions, while the BG blends have lower BSCO and BSHC emissions.  相似文献   

13.
In this study, hydrocarbon fuel (HCF) was derived from waste transformer oil through a traditional base-catalysed trans-esterification process. The experimental investigations using its blends of 25%, 50%, 75%, 100% and diesel fuel were carried out separately. The HCF obtained from waste transformer oil is used in a direct injection (DI) diesel engine without any engine modification to evaluate its performance, emission and combustion characteristics. The results indicate that the engine operating on test fuel blends shows a marginal increase in brake thermal efficiency (BTE) with a significant reduction in smoke. Nitrous oxides (NOx) emission was slightly higher for test fuel blends than for diesel. The results show that at maximum load conditions, 25% HCF reduces carbon monoxide, smoke and hydrocarbon emission by 50%, 31% and 10%, respectively, whereas 50% HCF shows a greater BTE than other blends and is 12% higher than that of the diesel fuel. The combustion characteristics of fuel blends closely followed those of standard diesel.  相似文献   

14.
The present work deals about the performance, emission and combustion characteristics of a four-cylinder, direct injection, water-cooled, Indica diesel engine fuelled with biodiesel produced through the hydrodynamic cavitation method from an underutilised and potential feedstock Yellow Oleander (Thevetia peruviana) oil. Engine tests were performed with neat diesel and biodiesel blends of 10%, 20% and 30% from Yellow Oleander oil at different engine speeds. Experimental results showed that biodiesel produced through the hydrodynamic cavitation technique with a 1%?w/w catalyst percentage, 6:1?molar ratio and 35?min reaction time was equal to 97.5%. During engine performance tests, biodiesel blends showed higher brake-specific fuel consumption, brake thermal efficiency (for lower blends up to 20%) and exhaust gas temperature than diesel fuel. Engine emissions showed higher nitrogen oxide, but a decreased amount of smoke opacity, carbon monoxide, unburned hydrocarbon and favourable pθ diagram as compared to diesel.  相似文献   

15.
The current state of future energy and environmental crises has revitalised the need to find alternative sources of energy due to escalating oil prices and depleting oil reserves. To meet increasing energy requirements, there has been a growing interest in alternative fuels like biodiesel that can become a suitable diesel fuel substitute for compression ignition engine. Biodiesel offers a very promising alternative to diesel fuel, since they are renewable and have similar properties. Calophyllum inophyllum seed oil collected from different restaurants in the Nagapattinam region of South India was converted into methyl esters (biodiesel) by transesterification. Biodiesel produced from C. inophyllum oil was blended with diesel by different volume proportions (25%, 50%, and 75%). Biodiesel and its blends were tested on a direct injection (DI) diesel engine at a constant speed by varying loads from 0% to 100% in steps of 20% to analyse its performance, emission, and combustion characteristics. The results obtained were compared with that of diesel fuel. B25 (27.5%) showed better performance than diesel fuel (26.28%) at full load and B50 showed performances similar to diesel fuel. Smoke density of B25 was slightly (2.6%) higher than that of diesel at full load conditions. At full load, measured carbon monoxide emissions for B25 and B50 were 4% lower than that of diesel. Hydrocarbon emissions for B25 and B100 were 5.37% and 25.8% higher than that of diesel, respectively. Nitrogen oxides (NOx) emission was lower for all biodiesel blends. NOx emissions of B100 and B75 were lower than that of diesel by 22.16% and 13.29% at full load, respectively. Combustion profile was smoother, and no knocking problem was observed while operating with biodiesel blends. B75 produced peak cylinder pressure.  相似文献   

16.
Biodiesel has become one of the potential alternative sources to replace diesel. Some of the limitations of biodiesel include high NO x , poor atomization, poor oxidation stability, cold-flow problems, long-term storage problems, etc. Various strategies were discussed to overcome the limitations of biodiesels. Recent research is on effects of fuel additives or fuel composition modification to reformulate the fuel properties. This article is aimed at presenting the experimental investigation of the effects of isobutanol additive on the engine performance and emission characteristics of biodiesel blends derived from waste vegetable oils. The experimental investigation was conducted on a direct injection four-stroke diesel engine with different blends, B10, B20, B30, B10 (10% ISB), B20 (10% ISB), B30 (10% ISB), B10 (20% ISB), B20 (20% ISB) and B30 (20% ISB), and engine performance and emission characteristics are evaluated and discussed.  相似文献   

17.
ABSTRACT

This work investigates the effect of adding Cerium oxide nanoparticles at different proportions (30, 60 and 90?ppm) to Calophyllum inophyllum methyl ester and diesel blends (20% CI methyl ester and 80% diesel) in a four-stroke single-cylinder diesel engine. Addition of nanoparticles is a strategy to reduce emission and to improve the performance of the biodiesel. Modified fuels are introduced into the engine by admitting exhaust gas recirculation (EGR) at a rate of 10% and 20% so as to reduce nitrogen oxide (NOX) emissions from biodiesel and diesel blends. Results revealed a significant reduction in emissions (CO, NOX, HC and Smoke) at a 10% EGR rate. However, brake thermal efficiency is reduced with an increase in brake-specific fuel consumption at higher EGR rates. Hence, it is observed that 10% EGR rate is an effective method to control the emission of biodiesel and diesel blends without compromising much on engine efficiency.  相似文献   

18.
This paper presents the regulated emissions profile of a Euro 4 compliant common rail passenger car, fuelled with low concentration biodiesel blends. Four biodiesels of different origin and quality blended with a typical automotive diesel fuel at proportions of 10, 20, and 30% v/v. Emission and fuel consumption measurements were conducted on a chassis dynamometer with constant volume sampling (CVS) technique, over the New European Driving Cycle (NEDC) and the real traffic-based Artemis driving cycles. Limited effects were observed on CO2 emissions, while fuel consumption marginally increased with biodiesel. PM, HC and CO emissions improved with the addition of biodiesel, with some exceptions. Some increases with biodiesel were observed over the NEDC, as a consequence of biodiesel characteristics and engine conditions. NOx emissions were increased with the use of biodiesel blends and positively correlated with fuel unsaturation levels.  相似文献   

19.
In this experiment, the performance, emission, and combustion characteristics of a diesel engine were tested using bio-fuel (Anise oil) at different loads. The main focus of this study was to compare the existing biodiesel blends with the proposed mixture (anise?+?cerium oxide) of biodiesel blends in terms of engine parameters, cost, efficiency, and pollution control. The blends used in this experiment are B10 (Biodiesel-10%), B20 (Biodiesel-20%), and B30 (Biodiesel-30%). The emission and performance parameters considered for the test are SFC (specific fuel consumption), CO (carbon monoxide), NOX (nitrogen oxide), and HC (hydrocarbon). These parameters were tested for different load conditions such as 0%, 25%, 50%, 75%, and 100%. From the results, it shows that SFC is lower for B20 blend compared to that of pure diesel fuel, while B10, B30, B40, and B50 blends have slightly higher values. From the experiment, it is found that emissions of the HC and NOx were reduced and CO emission is slightly higher than the pure diesel.  相似文献   

20.
Diesel engines have been the ‘primus motor’ of transportation in the world since a long time now. However, the depletion of fuel supplies, recent concerns over the environment and the ever-increasing fuel prices have made the search for an alternative fuel of paramount importance. A considerable amount of interest has been shown by researchers to evaluate different plant and vegetable oils as a replacement of diesel. Based on this background, an attempt to investigate Thyme oil as a substitute to diesel without any modifications in the engine was made. The experiment was conducted on a 1500?rpm, four-stroke, diesel engine with single cylinder which is water cooled. Cerium Oxide nano additive was added to the blends of thyme oil with diesel and its effects on the brake thermal efficiency, specific fuel consumption (SFC) and exhaust emissions were examined. The experimental results portrayed better values of brake thermal efficiency and low SFC with B10 (10 parts of oil with 90 parts of diesel) and B20 samples of the blends, while the B40 blend showed lower NOx emissions at all loads. The HC content was found to increase with the increasing quantity of thyme oil in the blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号