首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Tenofovir (9-(R)-(2-phosphonylmethoxypropyl)-adenine) is an antiretroviral drug widely used for the treatment of human immunodeficiency virus (HIV-1) and Hepatitis B virus (HBV) infections. Tenofovir is extensively and rapidly excreted unchanged in the urine. In the expectation that tenofovir could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in selected agricultural soils. Less than 10% of [adenine-8-14C]-tenofovir added to soils varying widely in texture (sand, loam, clay loam) was mineralized in a 2-month incubation under laboratory conditions. Tenofovir was less readily extractable from clay soils than from a loam or a sandy loam soil. Radioactive residues of tenofovir were removed from the soil extractable fraction with DT50s ranging from 24 ± 2 to 67 + 22 days (first order kinetic model) or 44 + 9 to 127 + 55 days (zero order model). No extractable transformation products were detectable by HPLC. Tenofovir mineralization in the loam soil increased with temperature (range 4 °C to 30 °C), and did not occur in autoclaved soil, suggesting a microbial basis. Mineralization rates increased with soil moisture content, ranging from air-dried to saturated. In summary, tenofovir was relatively persistent in soils, there were no extractable transformation products detected, and the response of [adenine-8-14C]-tenofovir mineralization to soil temperature and heat sterilization indicated that the molecule was biodegraded by aerobic microorganisms. Sorption isotherms with dewatered biosolids suggested that tenofovir residues could potentially partition into the particulate fraction during sewage treatment.  相似文献   

2.
Triclocarban (TCC) is an antibacterial compound commonly detected in biosolids at parts-per-million concentrations. Approximately half of the biosolids produced in the United States are land-applied, resulting in a systematic release of TCC into the soil environment. The extent of biosolids-borne TCC environmental transport and potential human/ecological exposures will be greatly affected by its bioavailability and the rate of degradation in amended soils. To investigate these factors, radiolabeled TCC (14C-TCC) was incorporated into anaerobically digested biosolids, amended to two soils, and incubated under aerobic conditions. The evolution of 14CO2 (biodegradation) and changes in chemical extractability (bioavailability) was measured over time. Water extractable TCC over the study period was low and significantly decreased over the first 3 weeks of the study (from 14% to 4% in a fine sand soil and from 3 to < 1% in a silty clay loam soil). Mineralization (i.e. ultimate degradation), as measured by evolution of 14CO2, was < 4% over 7.5 months. Methanol extracts of the amended soils were analyzed by radiolabel thin-layer chromatography (RAD-TLC), but no intermediate degradation products were detected. Approximately 20% and 50% of the radioactivity in the amended fine sand and silty clay loam soils, respectively, was converted to bound residue as measured by solids combustion. These results indicate that biosolids-borne TCC becomes less bioavailable over time and biodegrades at a very slow rate.  相似文献   

3.
The risk for contamination of potatoes and groundwater through subsurface drip irrigation with low quality water was explored in 30 large-scale lysimeters containing repacked coarse sand and sandy loam soils. The human pathogens, Salmonella Senftenberg, Campylobacter jejuni and Escherichia coli O157:H7, and the virus indicator Salmonella Typhimurium bacteriophage 28B, were added weekly through irrigation tubes for one month with low irrigation rates (8 mm per week). In the following six months lysimeters were irrigated with groundwater free of pathogens. Two weeks after irrigation was started, phage 28B was detected in low concentrations (2 pfu ml−1) in leachate from both sandy loam soil and coarse sand lysimeters. After 27 days, phage 28B continued to be present in similar concentrations in leachate from lysimeters containing coarse sand, while no phage were found in lysimeters with sandy loam soil. The added bacterial pathogens were not found in any leachate samples during the entire study period of 212 days. Under the study conditions with repacked soil, limited macropores and low water velocity, bacterial pathogens seemed to be retained in the soil matrix and died-off before leaching to groundwater. However, viruses may leach to groundwater and represent a health risk as for some viruses only few virus particles are needed to cause human disease. The bacterial pathogens and the phage 28B were found on the potato samples harvested just after the application of microbial tracers was terminated. The findings of bacterial pathogens and phage 28 on all potato samples suggest that the main risk associated with subsurface drip irrigation with low quality water is faecal contamination of root crops, in particular those consumed raw.  相似文献   

4.
Diclofenac, 2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid, is an important non-steroidal anti-inflammatory drug widely used for human and animals to reduce inflammation and pain. Diclofenac could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in agricultural soils incubated in the laboratory. 14C-Diclofenac was rapidly mineralized without a lag when added to soils varying widely in texture (sandy loam, loam, clay loam). Over a range of temperature and moisture conditions extractable 14C-diclofenac residues decreased with half lives < 5 days. No extractable transformation products were detectable by HPLC. Diclofenac mineralization in the loam soil was abolished by heat sterilization. Addition of biosolids to sterile or non-sterile soil did not accelerate the dissipation of diclofenac. These findings indicate that diclofenac is readily biodegradable in agricultural soils.  相似文献   

5.
Soil-aquifer treatment is a wastewater treatment and reclamation option to facilitate beneficial water reuse. The fate of wastewater originated micropollutants in the soil-aquifer system is important to understand. In the study the sorption behavior of potential wastewater indicators such as two antiepileptic drugs (carbamazepine, primidone), one sulfonamide (sulfamethoxazole), and one corrosion inhibitor (benzotriazole) were determined with three natural soils (Lufa 2.2, Euro Soil 5, and Wulpen sand) that differed in pH, organic carbon content and particle size distribution. As aqueous phase a 0.01 M CaCl2 solution as well as the effluent of a municipal wastewater treatment plant was used. Affinities of all analytes to the soil increased from Wulpen sand, over Lufa 2.2 to Euro Soil 5, indicating that the organic carbon contents might be crucial for sorption. Isotherms were well described by the Freundlich model. Sorption was mainly close to linear (n = 0.93-1.07) for most target compounds and soils. Desorption gave rise to a small hysteresis only for Euro Soil 5 which was likely artificial, due to slow desorption kinetics beyond 24 h used in the experiment. All sorption studies confirmed that Carbamazepine, Benzotriazole and Primidone are appropriate to be used as wastewater indicator substances based on their low sorption affinity to soils, while the suitability of Sulfamethoxazole is limited due to the formation of non-extractable residues, especially at lower pH values.  相似文献   

6.
Due to unregulated uses of lead pellets for hunting purposes in Japan, soils and sediments in some river basins and wetlands have become highly contaminated with Pb. Deterioration of natural vegetation has occurred sporadically in these areas, and therefore revegetation is needed for ecological restoration. The objectives of the present study were to assess the effects of surface applications of compost and gypsum amendments on Pb availability to a watercress plant (Nasturtium officinale W.T. Aiton) and molecular-scale speciation of Pb in soil solid phases. The compost and gypsum amendments significantly decreased dissolved Pb and Sb in pore water. The concentration of Pb in aboveground plant tissues was 190 mg kg− 1 in the control soil and was reduced to < 20 mg kg− 1 in the compost and gypsum-amended soils. The concentration of Sb in plants grown in the control soil was 13 mg kg− 1, whereas that in the soils receiving compost and gypsum decreased below detectable levels. Redox potential was higher in vegetated soils (ave. 349 mV) than in the unvegetated soils (ave. 99 mV) due to oxygen introduced by plant roots. Extended X-ray absorption fine structure (EXAFS) spectroscopy illustrated that Pb occurred as Pb sorbed on birnessite and/or ferrihydrite (Pb-Mn/Fe, ~ 60%) and Pb sorbed on organic matter (Pb-org, ~ 15%), and galena (PbS, ~ 10%) in the vegetated and unvegetated control soils. The compost amendment increased the proportion of Pb-org by 2-fold than in the control soils. The amended soils with plant growth decreased the proportion of Pb-Mn/Fe phases by half of that without plant growth. Galena and anglesite (PbSO4) were not detected in compost-amended soils and even in gypsum-amended soils since a significant soil reduction to anoxic levels did not occur in the entire soil. The present study indicated that, under flooded conditions, surface applications of compost and gypsum amendments reduced plant Pb uptake from the Pb contaminated soil.  相似文献   

7.
Due to water scarcity, the agricultural production in arid areas is dependent on a sustainable irrigation management. In order to optimize irrigation systems, the application of superabsorbent polymers (SAP) as soil amendments, frequently studied within the last years, may be an appropriate measure to enhance the water holding capacity and the plant-available water in poor arable soils. These persistent polymers are also able to reduce heavy metal and salt stress to crops by accumulating those inorganic compounds. However, the impact of SAP on fate and behavior of organic xenobiotics in soil is unknown. Therefore, transformation and sorption of the model substance 14C-imazalil were monitored without and with SAP amendment in silty sand and sand soil under laboratory conditions.Within the 100-d incubation period, the transformation of 14C-imazalil was not substantially affected by the SAP amendment even though the microbial activity increased considerably. In the silty sand soil, extractable residues dropped from 90% to 45% without and from 96% to 46% with SAP amendment. Non-extractable residues continuously increased up to 49% and 35% while mineralization reached 6% and 5%, respectively. In the sand soil, characterized by its lower microbial activity and lower organic carbon content, extractable residues merely dropped from 99% to 81% and from 100% to 85% while non-extractable residues increased from 2% to 14% and 1% to 10%, respectively. Mineralization was lower than 2%. The increased microbial activity, usually promoting transformation processes of xenobiotics, was compensated by the enhanced sorption in the amended soils revealed by the increase of soil/water distribution coefficients (Kd) of 26 to 42 L kg− 1 for the silty sand and 6 to 25 L kg− 1 for the sand, respectively.  相似文献   

8.
The potential impact of oil and grease (O and G) to soils irrigated with greywater (GW) was investigated. Greywater streams were sampled and analyzed for O and G content, along with corresponding GW-irrigated soils. Untreated kitchen GW averaged 200 mg L(-1) O and G, over an order of magnitude more than other GW streams. GW-irrigated soils showed O and G accumulation of up to 200 mg kg(-l) within the first 20-cm of depth. To determine the potential effects of such O and G accumulation on water movement in soil, capillary rise and water drop penetration time (WDPT) experiments were conducted. The results showed up to 60% decrease in capillary rise when sand containing 250 mg kg(-1) O and G was used. Interestingly, no additional reduction in capillary rise was observed at concentrations above 250 mg kg(-1). WDPT was observed to increase linearly with increased O and G content, up to 1000 mg kg(-1). This work demonstrated that O and G in GW used for irrigation can accumulate in soil and may lead to a significant reduction in the soils ability to transmit water.  相似文献   

9.
The presence of energetic materials (used as explosives and propellants) at contaminated sites is a growing international issue, particularly with respect to military base closures and demilitarization policies. Improved understanding of the ecotoxicological effects of these materials is needed in order to accurately assess the potential exposure risks and impacts on the environment and its ecosystems. We studied the toxicity of the nitroaromatic energetic material 2,4-dinitrotoluene (2,4-DNT) on alfalfa (Medicago sativa L.), barnyard grass (Echinochloa crusgalli L. Beauv.), and perennial ryegrass (Lolium perenne L.) using four natural soils varying in properties (organic matter, clay content, and pH) that were hypothesized to affect chemical bioavailability and toxicity. Amended soils were subjected to natural light conditions, and wetting and drying cycles in a greenhouse for 13 weeks prior to toxicity testing to approximate field exposure conditions in terms of bioavailability, transformation, and degradation of 2,4-DNT. Definitive toxicity tests were performed according to standard protocols. The median effective concentration (EC50) values for shoot dry mass ranged from 8 to 229 mg kg− 1, depending on the plant species and soil type. Data indicated that 2,4-DNT was most toxic in the Sassafras (SSL) and Teller (TSL) sandy loam soils, with EC50 values for shoot dry mass ranging between 8 to 44 mg kg− 1, and least toxic in the Webster clay loam soil, with EC50 values for shoot dry mass ranging between 40 to 229 mg kg− 1. The toxicity of 2,4-DNT for each of the plant species was significantly (p ≤ 0.05) and inversely correlated with the soil organic matter content. Toxicity benchmark values determined in the present studies for 2,4-DNT weathered-and-aged in SSL or TSL soils will contribute to development of an Ecological Soil Screening Level for terrestrial plants that can be used for ecological risk assessment at contaminated sites.  相似文献   

10.
Countries with sewage treatment plants produce on average 27 kg of dried biosolids/person/yr. Concerns about nitrate leaching limit the rate at which biosolids are added to soil. We sought to determine whether biochar, a form of charcoal that is added to soil, could reduce nitrate leaching from biosolids amended soil. We set up 24 (0.5 m × 0.75 m) lysimeters, filled with two soil types (Templeton Silt Loam and Ashley Dene silt loam) and amended with combinations of biochar (102 t/ha equivalent) and biosolids (600 and 1200 kg N/ha equivalent). Pasture and leachates were sampled over 5 months. Nitrate leaching from biochar plus biosolids amended soils were reduced to levels at or below the control treatments. Pasture N concentrations were similarly affected by biochar addition. Future research should focus on unravelling the mechanism responsible for the change in the nitrogen cycle in soils amended with biosolids and biochar.  相似文献   

11.
The enhanced oxidative degradation of pyrene in quartz sand and alluvial and red soils by micro-nano size birnessite (δ-MnO2) in the presence and absence of sunlight was investigated. The degradation of pyrene by δ-MnO2 in quartz sand showed very little synergistic effect of sunlight irradiation on δ-MnO2 oxidizing power. However, pyrene degradation by δ-MnO2 in alluvial and red soils was greater under solar irradiation than the combination of photooxidation of pyrene and oxidation of pyrene by δ-MnO2. The oxidative degradation percentages of pyrene by δ-MnO2 under sunlight irradiation are 94.8, 97.7, and 100% for alluvial soil, red soil, and quartz sand, respectively. Oxidative degradation percentages of pyrene by δ-MnO2 in alluvial and red soils with irradiation of sunlight almost attained a maximum at 1 h with a 5% (w/w) dose of the amended oxidant. Due to their different total organic carbon (TOC) contents, the sequence of enhanced oxidative degradation of pyrene by δ-MnO2 in quartz sand and alluvial and red soils was quartz sand > red soil > alluvial soil. Further, this study revealed that δ-MnO2-enhanced oxidative degradation of pyrene is very pronounced in contaminated soils in situ even at deep soil layers where irradiation by sunlight is very limited.  相似文献   

12.
The transfer of arsenic to rice grains is a human health issue of growing relevance in regions of southern Asia where shallow groundwater used for irrigation of paddy fields is elevated in As. In the present study, As and Fe concentrations in soil water and in the roots of rice plants, primarily the Fe plaque surrounding the roots, were monitored during the 4-month growing season at two sites irrigated with groundwater containing ∼ 130 μg l− 1 As and two control sites irrigated with water containing < 15 μg l− 1 As. At both sites irrigated with contaminated water, As concentrations in soil water increased from < 10 μg l− 1 to > 1000 μg l− 1 during the first five weeks of the growth season and then gradually declined to < 10 μg l− 1 during the last five weeks. At the two control sites, concentrations of As in soil water never exceeded 40 µg l− 1. At both contaminated sites, the As content of roots and Fe plaque rose to 1000-1500 mg kg− 1 towards the middle of the growth season. It then declined to ∼ 300 mg kg− 1 towards the end, a level still well above As concentration of ∼ 100 mg kg− 1 in roots and plaque measured throughout the growing season at the two control sites. These time series, combined with simple mass balance considerations, demonstrate that the formation of Fe plaque on the roots of rice plants by micro-aeration significantly limits the uptake of As by rice plants grown in paddy fields. Large variations in the As and Fe content of plant stems at two of the sites irrigated with contaminated water and one of the control sites were also recorded. The origin of these variations, particularly during the last month of the growth season, needs to be better understood because they are likely to influence the uptake of As in rice grains.  相似文献   

13.
To model the impacts of ecoroofs on building envelope heat transfer accurately, thermal property data for ecoroof soils are needed. To address this need we have measured thermal conductivity, specific heat capacity, thermal emissivity, short wave reflectivity (albedo) and density for ecoroof soil samples over a range of moisture states. To represent a wide range of commonly used ecoroof soils we created eight test samples using an aggregate (expanded shale or pumice), sand, and organic matter in varying volumetric composition ratios. The results indicate significant variability in properties as a function both of soil composition and soil wetness. Thermal conductivity ranged from 0.25 to 0.34 W/(m K) for dry samples and 0.31–0.62 W/(m K) for wet samples. Specific heat capacity ranged from 830 to 1123 J/(kg K) for dry samples and 1085–1602 J/(kg K) for wet samples. Albedo was consistently higher for dry samples (0.17–0.40) decreasing substantially (0.04–0.20) as moisture was added. Thermal emissivities were relatively constant at 0.96 ± 0.02 regardless of soil type or moisture status. These results are discussed in the context of their impacts on building energy consumption and the importance of including daily and seasonal property variation within models of the ecoroof energy balance.  相似文献   

14.
The enhanced catalytic pyrene degradation in quartz sand and alluvial and red soils by micro-nano size TiO2 in the presence and absence of sunlight was investigated. The results showed that the synergistic effect of sunlight irradiation and TiO2 was more efficient on pyrene degradation in quartz sand and red and alluvial soils than the corresponding reaction system without sunlight irradiation. In the presence of sunlight irradiation, the photooxidation (without TiO2) of pyrene was very pronounced in alluvial and red soils and especially in quartz sand. However, in the absence of sunlight irradiation, the catalytic pyrene degradation by TiO2 and the photooxidation (without TiO2) of pyrene were almost nil. This implicates that ultra-violet (UV) wavelength range of sunlight plays an important role in TiO2-enhanced photocatalytic pyrene degradation and in photooxidation (without TiO2) of pyrene. The percentages of photocatalytic pyrene degradation by TiO2 in quartz sand, alluvial and red soils under sunlight irradiation were 78.3, 23.4, and 31.8%, respectively, at 5 h reaction period with a 5% (w/w) dose of the amended catalyst. The sequence of TiO2-enhanced catalytic pyrene degradation in quartz sand and alluvial and red soils was quartz sand > red soil > alluvial soil, due to different texture and total organic carbon (TOC) contents of the quartz sand and other two soils. The differential Fourier transform infrared (FT-IR) spectra of degraded pyrene in alluvial soil corroborate that TiO2-enhanced photocatalytic degradation rate of degraded pyrene was much greater than photooxidation (without TiO2) rate of degraded pyrene. Based on the data obtained, the importance for the application of TiO2-enhanced photocatalytic pyrene degradation and associated organic contaminants in contaminated soils was elucidated.  相似文献   

15.
Arsenic accumulation in irrigated agricultural soils in Northern Greece   总被引:1,自引:0,他引:1  
The accumulation of arsenic in soils and food crops due to the use of arsenic contaminated groundwater for irrigation has created worldwide concern. In the Chalkidiki prefecture in Northern Greece, groundwater As reach levels above 1000 μg/L within the Nea Triglia geothermal area. While this groundwater is no longer used for drinking, it represents the sole source for irrigation.This paper provides a first assessment of the spatial extent of As accumulation and of As mobility during rainfall and irrigation periods. Arsenic content in sampled soils ranged from 20 to 513 mg/kg inside to 5-66 mg/kg outside the geothermal area. Around irrigation sprinklers, high As concentrations extended horizontally to distances of at least 1.5 m, and to 50 cm in depth. During simulated rain events in soil columns (pH = 5, 0 μg As/L), accumulated As was quite mobile, resulting in porewater As concentrations of 500-1500 μg/L and exposing plant roots to high As(V) concentrations. In experiments with irrigation water (pH = 7.5, 1500 μg As/L), As was strongly retained (50.5-99.5%) by the majority of the soils. Uncontaminated soils (< 30 mg As/kg) kept soil porewater As concentrations to below 50 μg/L. An estimated retardation factor Rf = 434 for weakly contaminated soil (< 100 mg/kg) indicates good ability to reduce As mobility. Highly contaminated soils (> 500 mg/kg) could not retain any of the added As. Invoked mechanisms affecting As mobility in those soils were adsorption on solid phases such as Fe/Mn-phases and As co-precipitation with Ca. Low As accumulation was found in collected olives (0.3-25 μg/kg in flesh and 0.3-5.6 μg/kg in pits). However, soil arsenic concentrations are frequently elevated to far above recommended levels and arsenic uptake in faster growing plants has to be assessed.  相似文献   

16.
This paper investigates the characteristics of dissolved organic nitrogen (DON) in raw water from the Huangpu River and also in water undergoing treatment in the full-scale Yangshupu drinking water treatment plant (YDWTP) in Shanghai, China. The average DON concentration of the raw water was 0.34 mg/L, which comprised a relatively small portion (~ 5%) of the mass of total dissolved nitrogen (TDN). The molecular weight (MW) distribution of dissolved organic matter (DOM) was divided into five groups: > 30, 10-30, 3-10, 1-3 and < 1 kDa using a series of ultrafiltration membranes. Dissolved organic carbon (DOC), UV absorbance at wavelength of 254 nm (UV254) and DON of each MW fraction were analyzed. DON showed a similar fraction distribution as DOC and UV254. The < 1 kDa fraction dominated the composition of DON, DOC and UV254 as well as the major N-nitrosodimethylamine formation potential (NDMAFP) in the raw water. However, this DON fraction cannot be effectively removed in the treatment line at the YDWTP including pre-ozonation, clarification and sand filtration processes. The results from linear regression analysis showed that DON is moderately correlated to DOC, UV254 and trihalomethane formation potential (FP), and strongly correlated to haloacetic acids FP and NDMAFP. Therefore, DON could serve as a surrogate parameter to evaluate the reactivity of DOM and disinfection by-products FP.  相似文献   

17.
HYDRUS-1D was used to simulate water flow and leaching of fecal coliforms and bromide (Br) through six undisturbed soil lysimeters (70 cm depth by 50 cm diameter) under field conditions. Dairy shed effluent (DSE) spiked with Br was applied to the lysimeters, which contained fine sandy loam layers. This application was followed by fortnightly spray or flood water irrigation. Soil water contents were measured at four soil depths over 171 days, and leachate was collected from the bottom. The post-DSE period simulations yielded a generally decreased saturated water content compared to the pre-DSE period, and an increased saturated hydraulic conductivity and air-entry index, suggesting that changes in soil hydraulic properties (e.g. via changes in structure) can be induced by irrigation and seasonal effects. The single-porosity flow model was successful in simulating water flow under natural climatic conditions and spray irrigation. However, for lysimeters under flood irrigation, when the effect of preferential flow paths becomes more significant, the good agreement between predicted and observed water contents could only be achieved by using a dual-porosity flow model. Results derived from a mobile-immobile transport model suggest that compared to Br, bacteria were transported through a narrower pore-network with less mass exchange between mobile and immobile water zones. Our study suggests that soils with higher topsoil clay content and soils under flood irrigation are at a high risk of bacteria leaching through preferential flow paths. Irrigation management strategies must minimize the effect of preferential flow to reduce bacterial leaching from land applications of effluent.  相似文献   

18.
In this study the effect of soil type, level of pre-treatment, ponding depth, temperature and sunlight on clogging of soil aquifer treatment (SAT) systems was evaluated over an eight week duration in constant temperature and glasshouse environments. Of the two soil types tested, the more permeable sand media clogged more than the loam, but still retained an order of magnitude higher absolute permeability. A 6- to 8-fold difference in hydraulic loading rates was observed between the four source water types tested (one potable water and three recycled waters), with improved water quality resulting in significantly higher infiltration. Infiltration rates for ponding depths of 30 cm and 50 cm were higher than 10 cm, although for 50 cm clogging rates were higher due to greater compaction of the clogging layer. Overall, physical clogging was more significant than other forms of clogging. Microbial clogging becomes increasingly important when the particulate concentrations in the source waters are reduced through pre-treatment and for finer textured soils due to the higher specific surface area of the media. Clogging by gas binding took place in the glasshouse but not in the lab, and mechanical clogging associated with particle rearrangement was evident in the sand media but not in the loam. These results offer insight into the soil, water quality and operating conditions needed to achieve viable SAT systems.  相似文献   

19.
The transport of Glyphosate ([N-phosphonomethyl] glycine), AMPA (aminomethylphosphonic acid, CH6NO3P), and Bromide (Br) has been studied, in the Mediterranean Maresme area of Spain, north of Barcelona, where groundwater is located at a depth of 5.5 m. The unsaturated zone of weathered — granite soils was characterized in adjacent irrigated and non-irrigated experimental plots where 11 and 10 boreholes were drilled, respectively. At the non irrigated plot, the first half of the period was affected by a persistent and intense rainfall. After 69 days of application residues of Glyphosate up to 73.6 μgg− 1 were detected till a depth of 0.5 m under irrigated conditions, AMPA, analyzed only in the irrigated plot was detected till a depth of 0.5 m. According to the retardation coefficient of Glyphosate as compared to that of Br for the topsoil and subsoil (80 and 83, respectively) and the maximum observed migration depth of Br (2.9 m) Glyphosate and AMPA should have been detected till a depth of 0.05 m only. Such migration could be related to the low content of organic matter and clays in the soils; recharge generated by irrigation and heavy rain, and possible preferential solute transport and/or colloidal mediated transport.  相似文献   

20.
黄土中砂层对入渗特性的影响   总被引:25,自引:0,他引:25       下载免费PDF全文
本文根据土壤水的能量原理,对砂层在黄土中的入渗特性进行了室内一维土柱的入渗试验研究及数学模拟。结果表明:在黄土中设置砂层不仅具有良好的阻水性,使下渗水流在一定限度内滞留于砂层以上的土体内,增加了上层土壤的持水能力;而且还具有减渗性,使下渗水量及入渗锋面的湿润速度明显减小,并且还可将下渗的非线性过程转化为线性过程,从而使整个入渗过程进入一个具有较小入渗率的稳渗阶段。本项研究结果为在黄土地区采用设置砂层的方法,作为水利、建筑工程以及西北农村窑洞民居的一项防渗、减渗的工程技术措施提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号