首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The femurs of male and female sheep (Ovis aries), aged 18 months, bred on pastures fertilized twice annually with sewage sludge (2.25 tonnes dry matter/ha; Treated; T)) or on pastures treated with inorganic fertilizer (Control; C) were studied, using peripheral Quantitative Computed Tomography (pQCT) and the three-point bending test. Males were maintained on the respective treatments from conception to weaning and then maintained on control pastures while the females were maintained on the respective treatments until slaughter.T rams exhibited increased total bone mineral density (BMD) at the metaphyseal part of femur (+ 10.5%, p < 0.01) compared with C rams but had a reduced total cross sectional area (CSA, − 11.5%, p < 0.001), trabecular CSA (− 17.1%, p < 0.01) and periosteal circumference (− 5.7%, p < 0.001). In the mid-diaphyseal part, T rams had an increased total BMD (+ 13.8%, p < 0.0001) and stiffness (+ 6.4%, p < 0.01) but reduced total CSA (− 12.1%, p < 0.0001) and marrow cavity (− 25.8%, p < 0.0001), relative to C rams.In ewes although pQCT analysis of neither the metaphyseal nor the mid-diaphyseal part of the female femur bones showed any significant differences with treatment, the biomechanical method revealed a reduction in load at failure (− 17.3%, p < 0.01) and stiffness (− 10.7%, p < 0.05) amongst T ewes. It is concluded that exposure to pollutants present in sewage sludge can perturb bone tissue homeostasis in sheep, but particularly in males.  相似文献   

2.
Sheep grazing metal-contaminated floodplain pastures across mid-Wales ingest high concentrations of lead (Pb) in vegetation and directly in the form of soil. Sheep whole blood analysis indicated that Pb concentrations can be significantly elevated for animals grazing contaminated sites: in winter/spring, a median blood concentration of 147 µg Pb l− 1 was found at the location with the highest soil enrichment of this metal compared to only 26 µg Pb l− 1 for the control flock. There was within-flock variability in blood-Pb concentration, and overlap between blood-Pb ranges in animals grazing control and contaminated sites, although use of the Kruskal-Wallis H test established a number of significant (P < 0.05) differences between the blood-Pb content of flocks grazing the various study locations. Despite total daily intakes of up to 723 mg Pb d− 1, only one individual sheep showed a blood-Pb content above the ‘normal safe’ concentration of 250 µg l− 1. Blood and wool analyses were found to have limited value for the diagnosis of environmental exposure to Pb, and further consideration of metal accumulation in offal, bone and muscle tissue is recommended.  相似文献   

3.
Arsenic bioaccessibility in soils near chromated copper arsenate (CCA)-treated structures has recently been reported, and results have shown that soil properties and arsenic fractionation can influence bioaccessibility. Because of the limited data set of published results, additional soil samples and a wider range of soil properties are tested in the present work. The objectives are: (1) to confirm previous results regarding the influence of soil properties on arsenic bioaccessibility in CCA-contaminated soils, (2) to investigate additional soil properties influencing arsenic bioaccessibility, and to identify chemical extractants which can estimate in vitro gastrointestinal (IVG) bioaccessibility, (3) to determine arsenic speciation in the intestinal phase of the IVG method and, (4) to assess the influence of two particle-size fractions on arsenic bioaccessibility. Bioaccessible arsenic in eight soils collected near CCA-treated utility poles was assessed using the IVG method. Five out of the eight soils were selected for a detailed characterization. Moreover, these five soils and two certified reference materials were tested by three different metal oxide extraction methods (citrate dithionite (CD), ammonium oxalate (OX), and hydroxylamine hydrochloride (HH)). Additionally, VMINTEQ was used to determine arsenic speciation in the intestinal phase. Finally, two particle-size fractions (< 250 μm, < 90 μm) were tested to determine their influence on arsenic bioaccessibility. First, arsenic bioaccessibility in the eight study-soils ranged between 17.0 ± 0.4% and 46.9 ± 1.1% (mean value 30.5 ± 3.6%). Using data from 20 CCA-contaminated soil samples, total organic carbon (r = 0.50, p < 0.05), clay content (r = − 0.57, p < 0.01), sand content (r = 0.48, p < 0.05), and water-soluble arsenic (r = 0.66, p < 0.01) were correlated with arsenic bioaccessibility. The mean percentage of total arsenic extracted from five selected soils was: HH (71.9 ± 4.1%) > OX (58.0 ± 3.1%) > water-soluble arsenic (2.2 ± 0.5%), while the mean value for arsenic bioaccessibility was 27.3 ± 2.8% (n = 5). Arsenic extracted by HH (r = 0.85, p < 0.01, n = 8) and OX (r = 0.93, p < 0.05, n = 5), showed a strong correlation with arsenic bioaccessibility. Moreover, dissolved arsenic in the intestinal phase was exclusively under the form of arsenate As(V). Finally, arsenic bioaccessibility (in mg/kg) increased when soil particles < 90 μm were used.  相似文献   

4.
Iron (Fe) deficiency is the most common nutritional problem among children and lead (Pb) toxicity is the most common environmental health threat to children all over the world. The objective of this study was to determine blood lead (BPb) levels and prevalence of Fe deficient anemia among 1 to 5 year old children attending day care clinic in pediatric ward of civil hospital Karachi, Pakistan. A total of 340 children of both genders participating in this study, were screened for anemia. Among them 215 were anemic and 125 non-anemic. The anemic group was further divided in two groups on the basis of % hemoglobin (Hb), mild (Hb < 10 g/dL) and severe anemic group (Hb < 8 g/dL), while non-anemic as referent children (Hb > 10 g/dL). The blood samples were analysed for Pb and Fe, along with hematological parameters. The result indicated that anemic children had a higher mean values of Pb in blood than referent children with Hb > 10 g/dL. The Pb levels < 100 μg/L were detected in 40% referent children while 60% of them had > 10 μg/dL. The BPb concentration in severe anemic children (53%) was found in the range of 100-200 μg/L, whereas 47% had > 200 μg/L. The significant negative correlations of BPb level with % Hb (r = −0.514 and r = −0.685) and Fe contents (r = −0.522, r = −0.762, p < 0.001) were observed in mild and severe anemic children respectively. While positive correlation was observed between BPb and age of both group and genders (r = 0.69, p < 0.01). The BPb levels were significantly associated with biochemical indices in the blood which have the potential to be used as biomarkers of Pb intoxication and Fe deficient anemia.  相似文献   

5.
Biomphalaria glabrata is a widespread freshwater gastropod mollusc. The easy aquaculture of these organisms allow its use as an accessible tool for contamination bioassays. B. glabrata showed marked metabolic responses when exposed to cadmium, lead and arsenic. Those responses could also affect the reproduction of the snails. Taking into account this hypothesis, B. glabrata were exposed for 96 h (acute laboratory bioassays) to different concentrations of cadmium (0.1, 0.05 and 0 mg/L), lead (0.5, 0.1, 0.05 and 0 mg/L) and arsenic (0.5, 0.1, 0.05 and 0 mg/L). Snails were removed from the aquaria while eggs were left in the same contaminant concentrations. The effect of the assayed toxicants on snail reproduction was registered as the alterations of the total number of laid eggs (TNLE), hatching time and embryonic survival.At 0.10 mg/L cadmium significantly decreased the TNLE (p < 0.05) and no embryos survived. The lowest assayed level (0.05 mg/L) of cadmium, delayed the hatching time twice when it was compared with the control group (p < 0.01).Lead decreased the TNLE at 0.5 mg/L level (p < 0.01). The other assayed doses (0.05 and 0.10 mg/L) also decreased embryonic survival significantly (p < 0.05 and p < 0.01 respectively) and extended twice the time to hatching (p < 0.01). The 0.50 mg/L level killed all embryos.Arsenic at all studied concentrations decreased the TNLE (p < 0.05) while the hatching time was increased by 50%. Embryo survival only decreased at the highest level (0.5 mg/L) of arsenic assayed.In summary, the acute exposure (96 h) to cadmium lead and arsenic, altered the reproduction of B. glabrata, modifying the TNLE, hatching time and embryonic survival.  相似文献   

6.
Polybrominated diphenyl ethers (PBDEs), perfluorinated alkylated substances (PFAS), and metals were monitored in tile drainage and groundwater following liquid (LMB) and dewatered municipal biosolid (DMB) applications to silty-clay loam agricultural field plots. LMB was applied (93,500 L ha− 1) in late fall 2005 via surface spreading on un-tilled soil (SSLMB), and a one-pass aerator-based pre-tillage prior to surface spreading (AerWay SSD) (A). The DMB was applied (8 Mg dw ha− 1) in early summer 2006 on the same plots by injecting DMB beneath the soil surface (DI), and surface spreading on un-tilled soil (SSDMB). Key PBDE congeners (BDE-47, -99, -100, -153, -154, -183, -209) comprising 97% of total PBDE in LMB, had maximum tile effluent concentrations ranging from 6 to 320 ng L− 1 during application-induced tile flow. SSLMB application-induced tile mass loads for these PBDE congeners were significantly higher than those for control (C) plots (no LMB) (p < 0.05), but not A plots (> 0.05). PBDE mass loss via tile (0-2 h post-application) as a percent of mass applied was ~ 0.04-0.1% and ~ 0.8-1.7% for A and SSLMB, respectively. Total PBDE loading to soil via LMB and DMB application was 0.0018 and 0.02 kg total PBDE ha− 1 yr− 1, respectively. Total PBDE concentration in soil (0-0.2 m) after both applications was 115 ng g− 1 dw, (sampled 599 days and 340 days post LMB and DMB applications respectively). Of all the PFAS compounds, only PFOS (max concentration = 17 ng L− 1) and PFOA (12 ng L− 1) were found above detectable limits in tile drainage from the application plots. Mass loads of metals in tile for the LMB application-induced tile hydrograph event, and post-application concentrations of metals in groundwater, showed significant (< 0.05) land application treatment effects (SSLMB > A > C for tile and SSLMB and A > C for groundwater for most results). Following DMB application, no significant differences in metal mass loads in tile were found between SSDMB and DI treatments (PBDE/PFAS were not measured). But for many metals (Cu, Se, Cd, Mo, Hg and Pb) both SSDMB and DI loads were significantly higher than those from C, but only during < 100 days post DMB application. Clearly, pre-tilling the soil (e.g., A) prior to surface application of LMB will reduce application-based PBDE and metal contamination to tile drainage and shallow groundwater. Directly injecting DMB in soil does not significantly increase metal loading to tile drains relative to SSDMB, thus, DI should be considered a DMB land application option.  相似文献   

7.

Objective

To investigate blood lead level and its relationship to copper, zinc, calcium, magnesium and iron in the children aged 0 to 14 years old from Beijing, China.

Methods

We classified 3181 children into one of the four groups: Group A (n = 783, < 1 year old); Group B (n = 1538, 1-3 years old); Group C (n = 443, 3-7 years old); and, Group D (n = 417, 7-14 years old). All these metal elements were determined by atomic absorption spectrometry.

Results

The blood lead level was 0.207 ± 0.105 μmol/L. There was a significant gender difference for zinc (P < 0.05) in Group C, and there was also a significant gender difference for copper (P < 0.05) and lead (P < 0.05) in Group D. Controlling for gender and age, we observed that there was a negative correlation of lead with zinc (r = − 0.052, P < 0.01), magnesium (r = − 0.042, P < 0.05) and iron (r = − 0.031, P < 0.05), respectively. Furthermore, in the children aged 1-7 years old, we also found there was a negative linear correlation of lead with zinc, magnesium and iron, respectively (P < 0.01).

Conclusion

Blood lead level in children from Beijing was markedly decreased. And deficiency of zinc, magnesium and iron is related to the elevated blood lead level in the children aged 1-7 years.  相似文献   

8.
The extent of children's exposure to multiple toxic metals is not well described in many developing countries. We examined metal exposures in young children (6-37 months) from Montevideo, Uruguay and their mothers (15-47 years) participating in a community-based study. Hair samples collected from 180 children and their mothers were analyzed for: lead (Pb), cadmium (Cd), manganese (Mn), and arsenic (As) concentration using inductively coupled plasma-mass spectrometry (ICP-MS). Median metal levels (μg/g) were: Pb 13.69, Mn 1.45, Cd 0.17, and As 0.09 for children and Pb 4.27, Mn 1.42, Cd 0.08, and As 0.02 for mothers. Of the child and maternal samples, 1.7% and 2.9% were below the limit of detection (LOD) for Cd, and 21.3% and 38.5% were below the LOD for As, respectively. Correlations between maternal and child levels ranged 0.38-0.55 (p < 0.01). Maternal hair metal levels were the strongest predictors of metal concentrations in children's hair. Girls had significantly lower As levels than boys (p < 0.01) but did not differ on other metals. In addition, in bivariate logistic regressions predicting the likelihood that the child would be exposed to multiple metals, hemoglobin < 10.5 g/dL (OR = 2.12, p < 0.05), blood lead (OR = 1.17, p < 0.01), and the mother being exposed to two or more metals (OR = 3.34, p < 0.01) were identified as significant predictors of increased likelihood of multiple metal exposure. Older child age (OR = 0.96, p < 0.05), higher maternal education (OR = 0.35, p < 0.01), and higher number of household possessions (OR = 0.83, p < 0.01) were significantly associated with decreased likelihood of multiple metal exposure. Preschool children in Uruguay are exposed to multiple metals at levels that in other studies have been associated with cognitive and behavioral deficits. Sources of exposure, as well as cognitive and behavioral consequences of multiple metal exposure, should be investigated in this population.  相似文献   

9.
The precipitation chemistry, deposition, nutrient pools and composition of soils and soil water, as well as an estimate of historical deposition of sulphur (S) and inorganic nitrogen (N) for the period 1860-2008, were determined in primeval deciduous and coniferous forests at the sites Javornik and Pop Ivan, respectively. Measured S throughfall inputs of 10 kg ha− 1 year− 1 in 2008 were similar to those estimated for the period 1900-1950 at both sites. The highest estimated S inputs were in the 1980s. Measured bulk deposition of N in 2008 was lower at Pop Ivan (5.6 kg ha− 1 year− 1) compared to Javornik (12 kg ha− 1 year− 1). Significantly lower NO3 deposition was both estimated and measured at Pop Ivan. Higher soil base cation concentrations were observed at well-buffered Javornik underlain by flysch (Ca pool of 2046 kg ha− 1 and base saturation of 29%) compared to Pop Ivan underlain by crystalline schist (Ca pool of 186 kg ha− 1 and base saturation of 6.5%). The soil pool of organic carbon (C) was higher at Pop Ivan (212 t ha− 1) compared to Javornik (127 t ha− 1). The C concentration was positively correlated with organic N in the soil (p < 0.001) at both sites, but the mass average C/N ratio in the forest floor was lower at Javornik (22) than at Pop Ivan (26). High N leaching of 17 kg ha− 1 year− 1 at the 90 cm depth was measured in the soil water at Javornik, suggesting high mineralization and nitrification rates in old growth deciduous forests in the area. Despite relatively low Al concentrations in the soil water, a low soil water Bc/Al ratio (0.9) (Bc = Ca + Mg + K) was found in the upper mineral soil at Pop Ivan. This suggests that the spruce forest ecosystems in the area are vulnerable to anthropogenic acidification and to the adverse effects of Al on forest root systems.  相似文献   

10.
A comprehensive study was conducted in July 2006, January 2007 and March 2007 to determine the impacts of some major physicochemical parameters on the level of mercury (Hg) in Puding Reservoir, Guizhou, China. The concentrations of Hg species in the summer campaign were significantly higher (p < 0.01, generally 2 to 3 times higher) than those in the winter and spring campaigns, and no statistical differences were found between the same parameters for the latter two campaigns (p > 0.05). Ancillary parameters including suspended particulate matter (SPM), dissolved organic carbon (DOC), temperature (T), dissolved oxygen (DO), pH, nitrate (NO3) and chloride (Cl) were also measured. During the sampling campaign in July 2006, average values for SPM, DOC, T, and NO3 were all higher compared to the other two campaigns, which suggested a similar seasonal trend between these parameters and Hg species. Seasonal variability may be related to increased runoff. High runoff volume due to abundant precipitation in the summer carried Hg-laden particulates into the reservoir, whereas there was less precipitation in the winter and spring when Hg levels were lower. Increased agricultural activity in the summer season also increased Hg levels in Puding Reservoir.  相似文献   

11.
The contribution of volatilization, sorption and transformation to the removal of 16 Pharmaceutical and Personal Care Products (PPCPs) in two lab-scale conventional activated sludge reactors, working under nitrifying (aerobic) and denitrifying (anoxic) conditions for more than 1.5 years, have been assessed. Pseudo-first order biological degradation rate constants (kbiol) were calculated for the selected compounds in both reactors. Faster degradation kinetics were measured in the nitrifying reactor compared to the denitrifying system for the majority of PPCPs. Compounds could be classified according to their kbiol into very highly (kbiol > 5 L gSS−1 d−1), highly (1 < kbiol < 5 L gSS−1 d−1), moderately (0.5 < kbiol < 1 L gSS−1 d−1) and hardly (kbiol < 0.5 L gSS−1 d−1) biodegradable.Results indicated that fluoxetine (FLX), natural estrogens (E1 + E2) and musk fragrances (HHCB, AHTN and ADBI) were transformed to a large extent under aerobic (>75%) and anoxic (>65%) conditions, whereas naproxen (NPX), ethinylestradiol (EE2), roxithromycin (ROX) and erythromycin (ERY) were only significantly transformed in the aerobic reactor (>80%). The anti-depressant citalopram (CTL) was moderately biotransformed under both, aerobic and anoxic conditions (>60% and >40%, respectively). Some compounds, as carbamazepine (CBZ), diazepam (DZP), sulfamethoxazole (SMX) and trimethoprim (TMP), manifested high resistance to biological transformation.Solids Retention Time (SRTaerobic >50 d and <50 d; SRTanoxic >20 d and <20 d) had a slightly positive effect on the removal of FLX, NPX, CTL, EE2 and natural estrogens (increase in removal efficiencies <10%). Removal of diclofenac (DCF) in the aerobic reactor was positively affected by the development of nitrifying biomass and increased from 0% up to 74%. Similarly, efficient anoxic transformation of ibuprofen (75%) was observed after an adaptation period of 340 d. Temperature (16-26 °C) only had a slight effect on the removal of CTL which increased in 4%.  相似文献   

12.
Characteristics of airborne bacteria and fungi were surveyed in the public buildings regulated in Korea, with the six-stage cascade impactor. The total concentrations of airborne bacteria and fungi were averaged to 404 and 382 cfu m−3 in hospital, 931 and 536 cfu m−3 in kindergarten, 294 and 334 cfu m−3 in elderly welfare facility, and 586 and 371 cfu m−3 in postpartum nurse center. Mean respirable concentrations of airborne bacteria and fungi were 194 and 292 cfu m−3 in hospital, 358 and 347 cfu m−3 in kindergarten, 134 and 266 cfu m−3 in elderly welfare facility, and 254 and 289 cfu m−3 in postpartum nurse center, respectively. Based on this results, total and respirable concentrations of airborne bacteria and fungi were significantly highest in kindergarten and lowest in elderly welfare facility (p<0.05p<0.05). The ratios of indoor and outdoor concentration for airborne bacteria and fungi were below 1.0 in all the investigated public buildings regardless of size distribution. The dominant genera identified in the public buildings were Staphylococcus spp., Micrococcus spp., Corynebacterium spp., and Bacillus spp., for airborne bacteria and Penicillium spp., Cladosporium spp., and Aspergillus spp., for airborne fungi, respectively. Size distributions of airborne bacteria and fungi in terms of the dominant genera were not observed consistently except for Staphylococcus spp., which was detected mainly on the first stage (>7.0 μm) and second stage(4.7–7.0 μm), and Penicillium spp., and Cladosporium spp., showing the highest collection rate at stage 3 (3.3–4.7 μm) regardless of the kind of the public buildings.  相似文献   

13.
The concentration of methylmercury (MeHg) in aquatic ecosystems is the net result of the highly dynamic abiotic and biotic processes of mercury methylation and demethylation. In this study, we conduct an examination of the net fluvial loading of methylmercury (MeHgNet = MeHgWatershed − MeHgLake outflow) across a 3 year time frame in both a dystrophic lake and an oligotrophic lake. A significant portion of MeHgNet variance in both lakes could be attributed to a seasonal pattern (11.4%, p = 0.009; oligotrophic, and 27.0%, p < 0.0001; dystrophic) which in both cases, was most correlated with air temperature. The dystrophic lake appeared to be a net source of methylmercury (MeHgNet = − 1.9 ± 0.3 mg MeHg d− 1) while the oligotrophic lake appeared to be a net sink (MeHgNet = 0.4 ± 0.2 mg MeHg d− 1), indicating that there was net methylation in the dystrophic lake and net demethylation in the oligotrophic lake. Higher MeHg loading to the lakes occurred during the summer and between seasons there was a difference in MeHgNet of 1.1 ±0.3 mg MeHg d− 1 and 3.1 ± 0.6 mg MeHg d− 1. Seasonal patterns of MeHgNet in the oligotrophic lake lagged behind the dystrophic lake by 39 days. The short term variation in MeHgNet was dominated by precipitation (t = 2.73, p = 0.008; dystrophic, t = 2.53, p = 0.017; oligotrophic).  相似文献   

14.
The purpose of this study was to link meteorological factors and mosquito (Aedes aegypti) abundance to examine the potential effects of climate variations on patterns of dengue epidemiology in Taiwan during 2001-2008. Spearman's rank correlation tests with and without time-lag were performed to investigate the overall correlation between dengue incidence rates and meteorological variables (i.e., minimum, mean, and maximum temperatures, relative humidity (RH), and rainfall) and percentage Breteau index (BI) level > 2 in Taipei and Kaohsiung of northern and southern Taiwan, respectively. A Poisson regression analysis was performed by using a generalized estimating equations (GEE) approach. The most parsimonious model was selected based on the quasi-likelihood based information criterion (QICu). Spearman's rank correlation tests revealed marginally positive trends in the weekly mean (ρ = 0.28, < 0.0001), maximum (ρ = 0.26, < 0.0001), and minimum (ρ = 0.30, < 0.0001) temperatures in Taipei. However, in Kaohsiung, all negative trends were found in the weekly mean (ρ = − 0.32, < 0.0001), maximum (ρ = − 0.30, < 0.0001), and minimum (ρ = − 0.32, p < 0.0001) temperatures. This study concluded that based on the GEE approach, rainfall, minimum temperature, and RH, all with 3-month lag, and 1-month lag of percentage BI level > 2 are the significant predictors of dengue incidence in Kaohsiung (QICu = − 277.77). This study suggested that warmer temperature with 3-month lag, elevated humidity with high mosquito density increased the transmission rate of human dengue fever infection in southern Taiwan.  相似文献   

15.
Animal manure is a significant source of environmental pollution and manure dilution in barn cleaning and slurry storage is a common practice in animal agriculture. The effect of swine manure dilution on releases of four pollutant gases was studied in a 30-day experiment using eight manure reactors divided into two groups. One group was treated with swine manure of 6.71% dry matter and another with manure diluted with water to 3.73% dry matter. Ammonia release from the diluted manure was 3.32 mg min−1 m−2 and was 71.0% of the 4.67 mg min−1 m−2 from the undiluted manure (P < 0.01). Because the ammonia release reduction ratio was lower than the manure dilution ratio, dilution could increase the total ammonia emissions from swine manure, especially in lagoons with large liquid surface areas. Carbon dioxide release of 87.3 mg min−1 m−2 from the diluted manure was 56.4% of the 154.8 mg min−1 m−2 from the undiluted manure (P < 0.01). Manure dry matter was an important factor for carbon dioxide release from manure. No differences were observed between the treatments (P > 0.05) for both hydrogen sulfide and sulfur dioxide releases. Therefore, dilution could also significantly increase the total releases of hydrogen sulfide and sulfur dioxide to the environment because dilution adds to the total manure volume and usually also increases the total gas release surface area.  相似文献   

16.
The concentrations of total mercury (Hg), methylmercury (MeHg) and total selenium (Se) were determined in muscle, liver and brain tissues of young-of-the-year walleye (Stizosedion vitreum) specimens collected from 8 boreal lakes that are located within 107 km around the Sudbury smelters in Ontario, Canada. Dry weight basis concentrations of Hg were highest in muscle and lowest in brain (p < 0.05), those of MeHg were higher in muscle than in liver and brain but there was no significant difference between liver and brain (p < 0.05). The highest Se concentrations were found in liver and the lowest in brain (p < 0.05). Considering the biomass of the studied tissues, muscle was the part of the body where most of Hg, MeHg and Se were accumulated. In fish muscle, the percentage of MeHg over Hg was the highest and this percentage was the lowest in liver. The concentrations of Hg, MeHg and Se in the studied tissues were closely related to the concentrations of total dissolved Se in lake waters which vary with the distance of the lakes from the smelters. Thresholds of Se concentrations in tissues were revealed (6.2, 12.0 and 3.5 mg kg− 1 dry wt., for muscle, liver and brain, respectively), above which a significant reduction of MeHg concentrations was observed in all studied tissues compared to lower Se levels in the same tissues. Based on the collected information and data analysis, possible mechanisms for the biological processes behind the observed inverse relationships between Se and Hg in fish tissues are discussed.  相似文献   

17.
In a model feed channel for spiral-wound membranes the quantitative relationship of biomass and iron accumulation with pressure drop development was assessed. Biofouling was stimulated by the use of tap water enriched with acetate at a range of concentrations (1-1000 μg C l−1). Autopsies were performed to quantify biomass concentrations in the fouled feed channel at a range of Normalized Pressure Drop increase values (NPDi). Active biomass was determined with adenosinetriphosphate (ATP) and the concentration of bacterial cells with Total Direct Cell count (TDC). Carbohydrates (CH) were measured to include accumulated extracellular polymeric substances (EPS). The paired ATP and CH concentrations in the biofilm samples were significantly (p < 0.001; R2 = 0.62) correlated and both parameters were also significantly correlated with NPDi (p < 0.001). TDC was not correlated with the pressure drop in this study. The threshold concentration for an NPDi of 100% was 3.7 ng ATP cm−2 and for CH 8.1 μg CH cm−2. Both parameters are recommended for diagnostic membrane autopsy studies. Iron concentrations of 100-400 mg m−2 accumulated in the biofilm by adsorption were not correlated with the observed NPDi, thus indicating a minor role of Fe particulates at these concentrations in fouling of spiral-wound membrane.  相似文献   

18.
The presence of 28 antibiotics in three hospital effluents, five wastewater treatment plants (WWTPs), six rivers and a drinking water storage catchment were investigated within watersheds of South-East Queensland, Australia. All antibiotics were detected at least once, with the exception of the polypeptide bacitracin which was not detected at all. Antibiotics were found in hospital effluent ranging from 0.01-14.5 μg L− 1, dominated by the β-lactam, quinolone and sulphonamide groups. Antibiotics were found in WWTP influent up to 64 μg L− 1, dominated by the β-lactam, quinolone and sulphonamide groups. Investigated WWTPs were highly effective in removing antibiotics from the water phase, with an average removal rate of greater than 80% for all targeted antibiotics. However, antibiotics were still detected in WWTP effluents in the low ng L− 1 range up to a maximum of 3.4 μg L− 1, with the macrolide, quinolone and sulphonamide antibiotics most prevalent. Similarly, antibiotics were detected quite frequently in the low ng L− 1 range, up to 2 μg L− 1 in the surface waters of six investigated rivers including freshwater, estuarine and marine samples. The total investigated antibiotic concentration (TIAC) within the Nerang River was significantly lower (p < 0.05) than all other rivers sampled. The absence of WWTP discharge to this river is a likely explanation for the significantly lower TIAC and suggests that WWTP discharges are a dominant source of antibiotics to investigated surface waters. A significant difference (p < 0.001) was identified between TIACs at surface water sites with WWTP discharge compared to sites with no WWTP discharge, providing further evidence that WWTPs are an important source of antibiotics to streams. Despite the presence of antibiotics in surface waters used for drinking water extraction, no targeted antibiotics were detected in any drinking water samples.  相似文献   

19.
This study describes the design and application of a stratified sampling strategy of waterbodies to assess and analyze the distribution of cyanobacteria at a regional scale (Ile-de-France, IDF). Ten groups of hydrographical zones were defined within the IDF on the basis of their anthropogenic and geomorphologic characteristics. Sampling effort (n = 50) was then randomly allocated according to the number of waterbodies in each group. This sampling strategy was tested in August 2006, using a field probe to estimate total phytoplankton as well as cyanobacteria biomasses. The sampled waterbodies exhibited a wide range of phytoplankton (<1-375 μg equiv. Chla L−1) and cyanobacteria biomasses (<1-278 μg equiv. Chla L−1). 72% of the waterbodies in the IDF were classified as eutrophic (42% hypereutrophic), and 24% of the sites studied were dominated by cyanobacteria. Waterbodies connected to hydrographical networks (n = 26) showed significantly higher total (p < 0.0001; 3.5 times greater) and cyanobacterial (p < 0.001, 3.2 times greater) biomasses than the isolated ones (n = 24). No significant overall relationship was found through contingency analysis between waterbody trophic status and global land use categories (urban, periurban, and rural) within their hydrographical zones. However, concerning the waterbodies linked to hydrographical networks, the percentage of land covered by forest appeared as a good indicator of phytoplankton and cyanobacterial biomasses. This observation may be a consequence of lower amounts of nutrients being discharged into waterbodies from highly forested hydrological zone than from urban and/or agricultural areas. Our results illustrate a successful means of selecting representative waterbodies to conduct a regional assessment of cyanobacteria distribution using accessible GIS analyses.  相似文献   

20.
Solar radiation-driven inactivation of bacteria, virus and protozoan pathogen models was quantified in simulated drinking water at a temperate latitude (34°S). The water was seeded with Enterococcus faecalis, Clostridium sporogenes spores, and P22 bacteriophage, each at ca 1 × 105 m L−1, and exposed to natural sunlight in 30-L reaction vessels. Water temperature ranged from 17 to 39 °C during the experiments lasting up to 6 h. Dark controls showed little inactivation and so it was concluded that the inactivation observed was primarily driven by non-thermal processes. The optimised reactor design achieved S90 values (cumulative exposure required for 90% reduction) for the test microorganisms in the range 0.63-1.82 MJ m−2 of Global Solar Exposure (GSX) without the need for TiO2 as a catalyst. High turbidity (840-920 NTU) only reduced the S90 value by <40%. Further, when all S90 means were compared this decrease was not statistically significant (prob. > 0.05). However, inactivation was significantly reduced for E. faecalis and P22 when the transmittance of UV wavelengths was attenuated by water with high colour (140 PtCo units) or a suboptimally transparent reactor lid (prob. < 0.05). S90 values were consistent with those measured by other researchers (ca 1-10 MJ m−2) for a range of waters and microorganisms. Although temperatures required for SODIS type pasteurization were not produced, non-thermal inactivation alone appeared to offer a viable means for reliably disinfecting low colour source waters by greater than 4 orders of magnitude on sunny days at 34°S latitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号