首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
To characterise atmospheric input of chemical contaminants to urban rainwater tanks, bulk deposition (wet + dry deposition) was collected at sixteen sites in Brisbane, Queensland, Australia on a monthly basis during April 2007-March 2008 (N = 175). Water from rainwater tanks (22 sites, 26 tanks) was also sampled concurrently. The deposition/tank water was analysed for metals, soluble anions and selected samples were additionally analysed for PAHs, pesticides, phenols, organic & inorganic carbon. Flux (mg/m2/d) of total solids mass was found to correlate with average daily rainfall (R2 = 0.49) indicating the dominance of the wet deposition contribution to total solids mass. On average 97% of the total mass of analysed components was accounted for by Cl (25.0%), Na (22.6%), organic carbon (20.5%), NO3 (10.5%), SO42− (9.8%), inorganic carbon (5.7%), PO43− (1.6%) and NO2 (1.5%). For other minor elements the average flux from highest to lowest was in the order of Fe > Al > Zn > Mn > Sr > Pb > Ba > Cu > Se. There was a significant effect of location on flux of K, Sb, Sn, Li, Mn, Fe, Cu, Zn, Ba, Pb and SO42− but not other metals or anions. Overall the water quality resulting from the deposition (wet + dry) was good but 10.3%, 1.7% and 17.7% of samples had concentrations of Pb, Cd and Fe respectively greater than the Australian Drinking Water Guidelines (ADWG). This generally occurred in the drier months. In comparison 14.2% and 6.1% of tank samples had total Pb and Zn concentrations exceeding the guidelines. The cumulative mean concentration of lead in deposition was on average only 1/4 of that in tank water over the year at a site with high concentrations of Pb in tank water. This is an indication that deposition from the atmosphere is not the major contributor to high lead concentrations in urban rainwater tanks in a city with reasonable air quality, though it is still a significant portion.  相似文献   

2.
A study was conducted to assess the potential of nitrate-nitrogen (NO3-N) and fluoride (F) contamination in drinking groundwater as a function of lithology, soil characteristics and agricultural activities in an intensively cultivated district in India. Two hundred and fifty two groundwater samples were collected at different depths from various types of wells and analyzed for pH, electrical conductivity (EC), NO3-N load and F content. Database on lithology, soil properties, predominant cropping systems, fertilizer and pesticide uses were also recorded for the district. The NO3-N load in groundwater samples were low ranging from 0.12 to 6.58 μg mL− 1 with only 8.7% of them contained greater than 3.0 μg mL− 1 well below the 10 μg mL− 1, the threshold limit fixed by WHO for drinking purpose. Samples from the habitational areas showed higher NO3-N content over the agricultural fields. The content decreased with increasing depth of wells (r = − 0.25, P ≤ 0.01) and increased with increasing rate of nitrogenous fertilizer application (r = 0.90, P ≤ 0.01) and was higher in areas where shallow- rather than deep-rooted crops (r = − 0.28, = ≤ 0.01, with average root depth) are grown. The NO3-N load also decreased with increasing bulk density (r = − 0.73, P ≤ 0.01) and clay content (r = − 0.51, P ≤ 0.01) but increased with increasing hydraulic conductivity (r = 0.68, P ≤ 0.01), organic C (r = 0.78, P ≤ 0.01) and potential plant available N (r = 0.82, P ≤ 0.01) of soils. Fluoride content in groundwater was also low (0.02 to 1.15 μg mL− 1) with only 4.0% of them exceeding 1.0 μg mL− 1 posing a potential threat of fluorosis. On average, its content varied little spatially and along depth of sampling aquifers indicating little occurrence of F containing rocks/minerals in the geology of the district. The content showed a significant positive correlation (r = 0.234, = ≤ 0.01) with the amount of phosphatic fertilizer (single super phosphate) used for agriculture. Results thus indicated that the groundwater of the study area is presently safe for drinking purpose but some anthropogenic activities associated with intensive cultivation had a positive influence on its loading with NO3-N and F.  相似文献   

3.
Sun Y  Liang L  Zhao X  Yu L  Zhang J  Shi G  Zhou T 《Water research》2009,43(1):41-9305
Aromatic amines such as aniline and its derivatives are an important class of environmental water pollutants. A method based on capillary zone electrophoresis with amperometric detection (CZE-AD) at carbon disk electrode was developed for the determination of aromatic amines in water samples. The effects of working potential, pH and concentration of running buffer, separation voltage and injection time were investigated. Under the optimum conditions, 2,3-diaminonaphthalene, aniline, o-phenylenediamine and p-chloroaniline could be separated in 0.16 mol/L Na2HPO4-citric acid buffer (pH 4.6) within 23 min. The detection limits of them were 1.0 × 10−7, 3.3 × 10−8, 5.0 × 10−8, and 1.3 × 10−7 mol/L (S/N = 3), respectively. The method can be applied directly for the determination of aromatic amines in real water samples with satisfactory results.  相似文献   

4.
Biocide-containing anti-fouling paints are regulated and approved according to the added active ingredients, such as Cu. Biocide-free paints are considered to be less environmentally damaging and do not need an approval. Zn, a common ingredient in paints with the potential of causing adverse effects has received only minor attention. Laboratory experiments were conducted in artificial brackish seawater (ASW) and natural brackish seawater (NSW) to quantify release rates of Cu and Zn from biocide-containing and biocide-free labeled eroding anti-fouling paints used on commercial vessels as well as leisure boats. In addition, organisms from three trophic levels, the crustacean Nitocra spinipes, the macroalga Ceramium tenuicorne and the bacteria Vibrio fischeri, were exposed to Cu and Zn to determine the toxicity of these metals. The release rate of Cu in NSW was higher from the paints for professional use (3.2-3.6 µg cm2 d− 1) than from the biocide leaching leisure boat paint (1.1 µg cm2 d− 1). Biocide-free paints did leach considerably more Zn (4.4-8.2 µg cm2 d− 1) than biocide-containing leisure boat paint (3.0 µg cm2 d− 1) and ship paints (0.7-2.0 µg cm2 d− 1). In ASW the release rates of both metals were notably higher than in NSW for most tested paints. The macroalga was the most sensitive species to both Cu (EC50 = 6.4 µg l− 1) and Zn (EC50 = 25 µg l− 1) compared to the crustacean (Cu, LC50 = 2000 µg l− 1 Zn, LC50 = 890 µg l− 1), and the bacteria (Cu, EC50 = 800 µg l− 1 and Zn, EC50 = 2000 µg l− 1). The results suggest that the amounts of Zn and Cu leached from anti-fouling paints may attain toxic concentrations in areas with high boat density. To fully account for potential ecological risk associated with anti-fouling paints, Zn as well as active ingredients should be considered in the regulatory process.  相似文献   

5.
A novel Arxula adeninivorans yeast estrogen screen (nAES) assay has been developed for detection of estrogenic activity in various liquid samples such as wastewater, seawater, brackish water and swine urine. Two bio-components were engineered to co-express the human estrogen receptor α (hERα) and an inducible reporter gene; either the non-conventional phytase gene (phyK, derived from Klebsiella sp. ASR1) or the non-conventional tannase gene (ATAN1, derived from Arxula). Both reporters were put under the control of an Arxula derived glucoamylase (GAA) promoter, which was modified by the insertion of two estrogen-responsive elements (EREs). The Arxula transformation/expression platform Xplor® 2, which lacks resistance markers and E. coli elements, was used to select stable mitotic transformants. They were then analyzed for robustness and suitability as the bio-component for the nAES assay. Two types of the nAES assay based on the reporter proteins phytase and tannase (nAES-P, nAES-T) were used in this work. The nAES-P type is more suitable for the analysis of seawater, brackish water and urine whereas the nAES-T type exhibited higher robustness to NaCl. Both assay types have similar characteristics for the determination of estrogen in sewage and urine samples e.g. 6-25 h assay period with detection and determination limits and EC50 values for 17β-estradiol of 2.8 ng L− 1, 5.9 ng L− 1, 33.2 ng L− 1 (nAES-P) and 3.1 ng L− 1, 6.7 ng L− 1 and 39.4 ng L− 1 (nAES-T). Substrate specificity and analytical measurement range (AMR) for both assay types are also similar. These characteristics show that the nAES assay based on non-conventional salt tolerant yeast is applicable for a high throughput estrogen analysis in the environmental and regulatory control sectors.  相似文献   

6.
Vanadium (V) when ingested from drinking water in high concentrations (> 15 μg L− 1) is a potential health risk and is on track to becoming a regulated contaminant. High concentrations of V have been documented in lead corrosion by-products as Pb5(V5+O4)3Cl (vanadinite) which, in natural deposits is associated with iron oxides/oxyhydroxides, phases common in iron pipe corrosion by-products. The extent of potential reservoirs of V in iron corrosion by-products, its speciation, and mechanism of inclusion however are unknown. The aim of this study is to assess these parameters in iron corrosion by-products, implementing synchrotron-based μ-XRF mapping and μ-XANES along with traditional physiochemical characterization. The morphologies, mineralogies, and chemistry of the samples studied are superficially similar to typical iron corrosion by-products. However, we found V present as discrete grains of Pb5(V5+O4)3Cl likely embedded in the surface regions of the iron corrosion by-products. Concentrations of V observed in bulk XRF analysis ranged from 35 to 899 mg kg− 1. We calculate that even in pipes with iron corrosion by-products with low V concentration, 100 mg kg− 1, as little as 0.0027% of a 0.1-cm thick X 100-cm long section of that corrosion by-product needs to be disturbed to increase V concentrations in the drinking water at the tap to levels well above the 15 μg L− 1 notification level set by the State of California and could adversely impact human health. In addition, it is likely that large reservoirs of V are associated with iron corrosion by-products in unlined cast iron mains and service branches in numerous drinking water distribution systems.  相似文献   

7.
The concentration of methylmercury (MeHg) in aquatic ecosystems is the net result of the highly dynamic abiotic and biotic processes of mercury methylation and demethylation. In this study, we conduct an examination of the net fluvial loading of methylmercury (MeHgNet = MeHgWatershed − MeHgLake outflow) across a 3 year time frame in both a dystrophic lake and an oligotrophic lake. A significant portion of MeHgNet variance in both lakes could be attributed to a seasonal pattern (11.4%, p = 0.009; oligotrophic, and 27.0%, p < 0.0001; dystrophic) which in both cases, was most correlated with air temperature. The dystrophic lake appeared to be a net source of methylmercury (MeHgNet = − 1.9 ± 0.3 mg MeHg d− 1) while the oligotrophic lake appeared to be a net sink (MeHgNet = 0.4 ± 0.2 mg MeHg d− 1), indicating that there was net methylation in the dystrophic lake and net demethylation in the oligotrophic lake. Higher MeHg loading to the lakes occurred during the summer and between seasons there was a difference in MeHgNet of 1.1 ±0.3 mg MeHg d− 1 and 3.1 ± 0.6 mg MeHg d− 1. Seasonal patterns of MeHgNet in the oligotrophic lake lagged behind the dystrophic lake by 39 days. The short term variation in MeHgNet was dominated by precipitation (t = 2.73, p = 0.008; dystrophic, t = 2.53, p = 0.017; oligotrophic).  相似文献   

8.
A high-performance, environmentally friendly water treatment system was developed. The system consists mainly of an electrochemical and a photocatalytic oxidation unit, with a boron-doped diamond (BDD) electrode and TiO2 photocatalyst, respectively. All electric power for the mechanical systems and the electrolysis was able to be provided by photovoltaic cells. Thus, this system is totally driven by solar energy. The treatment ability of the electrolysis and photocatalysis units was investigated by phenol degradation kinetics. An observed rate constant of 5.1 × 10−3 dm3 cm−2 h−1 was calculated by pseudo-first-order kinetic analysis for the electrolysis, and a Langmuir-Hinshelwood rate constant of 5.6 μM−1 min−1 was calculated by kinetic analysis of the photocatalysis. According to previous reports, these values are sufficient for the mineralization of phenol. In a treatment test of river water samples, large amounts of chemical and biological contaminants were totally wet-incinerated by the system. This system could provide 12 L/day of drinking water from the Tama River using only solar energy. Therefore, this system may be useful for supplying drinking water during a disaster.  相似文献   

9.
The presence of 28 antibiotics in three hospital effluents, five wastewater treatment plants (WWTPs), six rivers and a drinking water storage catchment were investigated within watersheds of South-East Queensland, Australia. All antibiotics were detected at least once, with the exception of the polypeptide bacitracin which was not detected at all. Antibiotics were found in hospital effluent ranging from 0.01-14.5 μg L− 1, dominated by the β-lactam, quinolone and sulphonamide groups. Antibiotics were found in WWTP influent up to 64 μg L− 1, dominated by the β-lactam, quinolone and sulphonamide groups. Investigated WWTPs were highly effective in removing antibiotics from the water phase, with an average removal rate of greater than 80% for all targeted antibiotics. However, antibiotics were still detected in WWTP effluents in the low ng L− 1 range up to a maximum of 3.4 μg L− 1, with the macrolide, quinolone and sulphonamide antibiotics most prevalent. Similarly, antibiotics were detected quite frequently in the low ng L− 1 range, up to 2 μg L− 1 in the surface waters of six investigated rivers including freshwater, estuarine and marine samples. The total investigated antibiotic concentration (TIAC) within the Nerang River was significantly lower (p < 0.05) than all other rivers sampled. The absence of WWTP discharge to this river is a likely explanation for the significantly lower TIAC and suggests that WWTP discharges are a dominant source of antibiotics to investigated surface waters. A significant difference (p < 0.001) was identified between TIACs at surface water sites with WWTP discharge compared to sites with no WWTP discharge, providing further evidence that WWTPs are an important source of antibiotics to streams. Despite the presence of antibiotics in surface waters used for drinking water extraction, no targeted antibiotics were detected in any drinking water samples.  相似文献   

10.
Arsenic (As) poisoning has become a worldwide public health concern. The skin is quite sensitive to As and skin lesions are the most common and earliest nonmalignant effects associated to chronic As exposure. In 2005-2007, a survey was carried out on surface and groundwater arsenic contamination and relationships between As exposure via the drinking water and related adverse health effects (melanosis and keratosis) on villagers resides on the banks of Manchar lake, southern part of Sindh, Pakistan. We screened the population from arsenic-affected villages, 61 to 73% population were identified patients suffering from chronic arsenic toxicity. The effects of As toxicity via drinking water were estimated by biological samples (scalp hair and blood) of adults (males and females), have or have not skin problem (n = 187). The referent samples of both genders were also collected from the areas having low level of As (< 10 μg/L) in drinking water (n = 121). Arsenic concentration in drinking water and biological samples were analyzed using electrothermal atomic absorption spectrometry. The range of arsenic concentrations in lake surface water was 35.2-158 μg/L, which is 3-15 folds higher than World Health Organization [WHO, 2004. Guidelines for drinking-water quality third ed., WHO Geneva Switzerland.]. It was observed that As concentration in the scalp hair and blood samples were above the range of permissible values 0.034-0.319 μg As/g for hair and < 0.5-4.2 μg/L for blood. The linear regressions showed good correlations between arsenic concentrations in water versus hair and blood samples of exposed skin diseased subjects (R2 = 0.852 and 0.718) as compared to non-diseased subjects (R2 = 0.573 and 0.351), respectively.  相似文献   

11.
The interaction of chemical, physical and biological factors that affect the fate, transport and redox cycling of manganese in engineered drinking water systems is not clearly understood. This research investigated the presence of Mn-oxidizing and -reducing bacteria in conventional water treatment plants exposed to different levels of chlorine. Mn(II)-oxidizing and Mn(IV)-reducing bacteria, principally Bacillus spp., were isolated from biofilm samples recovered from four separate drinking water systems. Rates of Mn-oxidation and -reduction for selected individual isolates were represented by pseudo-first-order kinetics. Pseudo-first-order rate constants were obtained for Mn-oxidation (range: 0.106-0.659 days−1), aerobic Mn-reduction (range: 0.036-0.152 days−1), and anaerobic Mn-reduction (range: 0.024-0.052 days−1). The results indicate that microbial-catalyzed Mn-oxidation and -reduction (aerobic and anaerobic) can take place simultaneously in aqueous environments exposed to considerable oxygen and chlorine levels and thus affect Mn-release and -deposition in drinking water systems. This has important implications for Mn-management strategies, which typically assume Mn-reduction is not possible in the presence of chlorine and oxidizing conditions.  相似文献   

12.
This paper focuses on the study of the photochemical activity of dissolved organic matter present in rainwater. Formation rates of the reactive species hydroxyl radical (OH), singlet oxygen (1O2) and dissolved organic matter triplet states (3DOM?) were determined by irradiation (UV-A) of wet-only rainwater samples collected in Turin (Italy) in the presence of specific scavengers (benzene, furfuryl alcohol and phenol, respectively). Photo-formation rates of OH (≈ 3 · 1011 M s1) and 1O2 (≈ 1014 M s1) were lower (1 or 2 orders of magnitude) or largely lower (4 to 10 orders of magnitude) than those determined for fog and cloud samples in previous studies. 3DOM? formation rate values were either negligible or quite low (≈ 1012 M s1) by comparison with those evaluated for surface water samples. Deduced steady-state [OH] were in the same range as those reported for fog samples in the literature (8.7 · 1016 to 1.5 · 1015 M), while [1O2] was often several orders of magnitude lower and, therefore, could be considered as negligible. Nitrite (NO2) constituted the main source of OH (69 ± 21 to 138 ± 36%), and the deduced contribution of DOM was low or nil. All the results obtained in this study tend to demonstrate that DOM (including HUmic LIke Substances, HULIS) present in rainwater is poorly or not photoactive. Therefore, there could be considerable difference between rainwater DOM (HULIS included) and the organic matter present in surface waters, particularly the humic substances, as far as the photochemical activity is concerned.  相似文献   

13.
This study quantifies the uncertainty involved in predicting micropollutant oxidation during drinking water ozonation in a pilot plant reactor. The analysis is conducted for geosmin, methyl tert-butyl ether (MTBE), isopropylmethoxypyrazine (IPMP), bezafibrate, β-cyclocitral and ciprofloxazin. These compounds are representative for a wide range of substances with second order rate constants between 0.1 and 1.9 × 104 M−1 s−1 for the reaction with ozone and between 2 × 109 and 8 × 109 M−1 s−1 for the reaction with OH-radicals. Uncertainty ranges are derived for second order rate constants, hydraulic parameters, flow- and ozone concentration data, and water characteristic parameters. The uncertain model factors are propagated via Monte Carlo simulation and the resulting probability distributions of the relative residual micropollutant concentrations are assessed. The importance of factors in determining model output variance is quantified using Extended Fourier Amplitude Sensitivity Testing (Extended-FAST). For substances that react slowly with ozone (MTBE, IPMP, geosmin) the water characteristic Rct-value (ratio of ozone- to OH-radical concentration) is the most influential factor explaining 80% of the output variance. In the case of bezafibrate the Rct-value and the second order rate constant for the reaction with ozone each contribute about 30% to the output variance. For β-cyclocitral and ciprofloxazin (fast reacting with ozone) the second order rate constant for the reaction with ozone and the hydraulic model structure become the dominating sources of uncertainty.  相似文献   

14.
Solar radiation-driven inactivation of bacteria, virus and protozoan pathogen models was quantified in simulated drinking water at a temperate latitude (34°S). The water was seeded with Enterococcus faecalis, Clostridium sporogenes spores, and P22 bacteriophage, each at ca 1 × 105 m L−1, and exposed to natural sunlight in 30-L reaction vessels. Water temperature ranged from 17 to 39 °C during the experiments lasting up to 6 h. Dark controls showed little inactivation and so it was concluded that the inactivation observed was primarily driven by non-thermal processes. The optimised reactor design achieved S90 values (cumulative exposure required for 90% reduction) for the test microorganisms in the range 0.63-1.82 MJ m−2 of Global Solar Exposure (GSX) without the need for TiO2 as a catalyst. High turbidity (840-920 NTU) only reduced the S90 value by <40%. Further, when all S90 means were compared this decrease was not statistically significant (prob. > 0.05). However, inactivation was significantly reduced for E. faecalis and P22 when the transmittance of UV wavelengths was attenuated by water with high colour (140 PtCo units) or a suboptimally transparent reactor lid (prob. < 0.05). S90 values were consistent with those measured by other researchers (ca 1-10 MJ m−2) for a range of waters and microorganisms. Although temperatures required for SODIS type pasteurization were not produced, non-thermal inactivation alone appeared to offer a viable means for reliably disinfecting low colour source waters by greater than 4 orders of magnitude on sunny days at 34°S latitude.  相似文献   

15.
There is a widespread need for cultivation-free methods to quantify viability of natural microbial communities in aquatic environments. Adenosine tri-phosphate (ATP) is the energy currency of all living cells, and therefore a useful indicator of viability. A luminescence-based ATP kit/protocol was optimised in order to detect ATP concentrations as low as 0.0001 nM with a standard deviation of <5%. Using this method, more than 100 water samples from a variety of aquatic environments (drinking water, groundwater, bottled water, river water, lake water and wastewater effluent) were analysed for extracellular ATP and microbial ATP in comparison with flow-cytometric (FCM) parameters. Microbial ATP concentrations ranged between 3% and 97% of total ATP concentrations, and correlated well (R2 = 0.8) with the concentrations of intact microbial cells (after staining with propidium iodide). From this correlation, we calculated an average ATP-per-cell value of 1.75 × 10−10 nmol/cell. An even better correlation (R2 = 0.88) was observed between intact biovolume (derived from FCM scatter data) and microbial ATP concentrations, and an average ATP-per-biovolume value of 2.95 × 10−9 nmol/μm3 was calculated. These results support the use of ATP analysis for both routine monitoring and research purposes, and contribute towards a better interpretation of ATP data.  相似文献   

16.
17.
The purpose of this study was to link meteorological factors and mosquito (Aedes aegypti) abundance to examine the potential effects of climate variations on patterns of dengue epidemiology in Taiwan during 2001-2008. Spearman's rank correlation tests with and without time-lag were performed to investigate the overall correlation between dengue incidence rates and meteorological variables (i.e., minimum, mean, and maximum temperatures, relative humidity (RH), and rainfall) and percentage Breteau index (BI) level > 2 in Taipei and Kaohsiung of northern and southern Taiwan, respectively. A Poisson regression analysis was performed by using a generalized estimating equations (GEE) approach. The most parsimonious model was selected based on the quasi-likelihood based information criterion (QICu). Spearman's rank correlation tests revealed marginally positive trends in the weekly mean (ρ = 0.28, < 0.0001), maximum (ρ = 0.26, < 0.0001), and minimum (ρ = 0.30, < 0.0001) temperatures in Taipei. However, in Kaohsiung, all negative trends were found in the weekly mean (ρ = − 0.32, < 0.0001), maximum (ρ = − 0.30, < 0.0001), and minimum (ρ = − 0.32, p < 0.0001) temperatures. This study concluded that based on the GEE approach, rainfall, minimum temperature, and RH, all with 3-month lag, and 1-month lag of percentage BI level > 2 are the significant predictors of dengue incidence in Kaohsiung (QICu = − 277.77). This study suggested that warmer temperature with 3-month lag, elevated humidity with high mosquito density increased the transmission rate of human dengue fever infection in southern Taiwan.  相似文献   

18.
Degradation kinetics and mineralization of an urban wastewater treatment plant effluent contaminated with a mixture of pharmaceutical compounds composed of amoxicillin (10 mg L−1), carbamazepine (5 mg L−1) and diclofenac (2.5 mg L−1) by TiO2 photocatalysis were investigated. The photocatalytic effect was investigated using both spiked distilled water and actual wastewater solutions. The process efficiency was evaluated through UV absorbance and TOC measurements. A set of bioassays (Daphnia magna, Pseudokirchneriella subcapitata and Lepidium sativum) was performed to evaluate the potential toxicity of the oxidation intermediates. A pseudo-first order kinetic model was found to fit well the experimental data. The mineralization rate (TOC) of the wastewater contaminated with the pharmaceuticals was found to be really slow (t1/2 = 86.6 min) compared to that of the same pharmaceuticals spiked in distilled water (t1/2 = 46.5 min). The results from the toxicity tests of single pharmaceuticals, their mixture and the wastewater matrix spiked with the pharmaceuticals displayed a general accordance between the responses of the freshwater aquatic species (P. subscapitata > D. magna). In general the photocatalytic treatment did not completely reduce the toxicity under the investigated conditions (maximum catalyst loading and irradiation time 0.8 g TiO2 L−1 and 120 min respectively).  相似文献   

19.
The novel lanthanum-modified clay water treatment technology (Phoslock®) seems very promising in remediation of eutrophied waters. Phoslock® is highly efficient in stripping dissolved phosphorous from the water column and in intercepting phosphorous released from the sediments. The active phosphorous-sorbent in Phoslock® is the Rare Earth Element lanthanum. A leachate experiment revealed that lanthanum could be released from the clay, but only in minute quantities of 0.13-2.13 μg l−1 for a worst-case Phoslock® dosage of 250 mg l−1. A life-history experiment with the zooplankton grazer Daphnia magna revealed that lanthanum, up to the 1000 μg l−1 tested, had no toxic effect on the animals, but only in medium without phosphorous. In the presence of phosphorous, rhabdophane (LaPO4 · nH2O) formation resulted in significant precipitation of the food algae and consequently affected life-history traits. With increasing amounts of lanthanum, in the presence of phosphate, animals remained smaller, matured later, and reproduced less, resulting in lower population growth rates. Growth rates were not affected at 33 μg La l−1, but were 6% and 7% lower at 100 and 330 μg l−1, respectively, and 20% lower at 1000 μg l−1. A juvenile growth assay with Phoslock® tested in the range 0-5000 mg l−1, yielded EC50 (NOEC) values of 871 (100) and 1557 (500) mg Phoslock® l−1 for weight and length based growth rates, respectively. The results of this study show that no major detrimental effects on Daphnia are to be expected from Phoslock® or its active ingredient lanthanum when applied in eutrophication control.  相似文献   

20.
The effects of insect defoliators on throughfall and soil nutrient fluxes were studied in coniferous and deciduous stands at five UK intensive monitoring plots (1998 to 2008). Links were found between the dissolved organic carbon (DOC), nitrogen (N) and potassium (K) fluxes through the forest system to biological activity within the canopy. Underlying soil type determined the leaching or accumulation of these elements. Under oak, monitored at two sites, frass from caterpillars of Tortrix viridana and Operophtera brumata added direct deposition of ~ 16 kg ha−1extra N during defoliation. Peaks of nitrate (NO3-N) flux between 5 and 9 kg ha−1 (×5 usual winter values) were recorded in consecutive years in shallow soil waters. Synchronous rises in deep soil NO3-N fluxes at the Grizedale sandy site indicate downward flushing, not seen at the clay site. Under three Sitka spruce stands, generation of honeydew (DOC) was attributed to two aphid species (Elatobium abietinum and Cinara pilicornis) with distinctive feeding strategies. Throughfall DOC showed mean annual fluxes (6 seasons) ~ 45-60 kg ha−1 compared with rainfall values of 14-22 kg ha−1. Increases of total N in throughfall and NO3-N fluxes in shallow soil solution were detected — soil water fluxes reached  8 kg ha−1 in Llyn Brianne, ~ 25 kg ha−1 in Tummel, and ~ 40 kg NO3-N ha−1 in Coalburn. At Tummel, on sandy soil, NO3-N leaching showed increased concentration at depth, attributed to microbiological activity within the soil. By contrast, at Coalburn and Llyn Brianne, sites on peaty gleys, soil water NO3-N was retained mostly within the humus layer. Soil type is thus key to predicting N movement and retention patterns. These long term analyses show important direct and indirect effects of phytophagous insects in forest ecosystems, on above and below ground processes affecting tree growth, soil condition, vegetation and water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号