首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The typical antibiotic Oxytetracycline (OTC) remained in the environment and it was widely used. And the migration and transformation of OTC in natural environment and its harmfulness had become the focus of attention. Thus, the influence of Fe(II/III)‐OTC complex on degradation of OTC by Fe(II)/H2O2 under simulated solar light was investigated. The results showed that the average ratio of OTC‐Fe(II/III) complexes formed by OTC and Fe(III) was 1:1 at pH = 2.5. In addition, it was difficult to obtain the stability constant of Fe(III)‐OTC complexes effectively considering the morphology of Fe(III) and the complexation sites of OTC. And when OTC:Fe(II):H2O2 = 1:1.5:2, the removal rate of OTC was 82% after 1 h, however, simulated solar light could not improve the degradation of OTC effectively. Furthermore, the existence of OTC‐Fe(II/III) complex led to the slow degradation stage of OTC degradation by Fe(II)/H2O2. It could be concluded that the Fe(III)‐OTC complex might prolong the retention time of OTC in the environment.  相似文献   

2.
De Laat J  Dao YH  El Najjar NH  Daou C 《Water research》2011,45(17):5654-5664
The decomposition rate of H2O2 by iron(III)-nitrilotriacetate complexes (FeIIINTA) has been investigated over a large range of experimental conditions: 3 < pH < 11, [Fe(III)]T,0: 0.05-1 mM; [NTA]T,0/[Fe(III)]T,0 molar ratios : 1-250; [H2O2]0: 1 mM-4 M) and concentrations of HO radical scavengers: 0-53 mM. Spectrophotometric analyses revealed that reactions of H2O2 with FeIIINTA (1 mM) at neutral pH immediately lead to the formation of intermediates (presumably peroxocomplexes of FeIIINTA) which absorb light in the region 350-600 nm where FeIIINTA and H2O2 do not absorb. Kinetic experiments showed that the decomposition rates of H2O2 were first-order with respect to H2O2 and that the apparent first-order rate constants were found to be proportional to the total concentration of FeIIINTA complexes, were at a maximum at pH 7.95 ± 0.10 and depend on the [NTA]T,0/[Fe(III)]T,0 and [H2O2]0/[Fe(III)]T,0 molar ratios. The addition of increasing concentrations of tert-butanol or sodium bicarbonate significantly decreased the decomposition rate of H2O2, suggesting the involvement of HO radicals in the decomposition of H2O2. The decomposition of H2O2 by FeIIINTA at neutral pH was accompanied by a production of dioxygen and by the oxidation of NTA. The degradation of the organic ligand during the course of the reaction led to a progressive decomplexation of FeIIINTA followed by a subsequent precipitation of iron(III) oxyhydroxides and by a significant decrease in the catalytic activity of Fe(III) species for the decomposition of H2O2.  相似文献   

3.
The article has studied the impact of various physicochemical factors (the concentration of H2O2: alcohol ratio, the presence of oxygen, of Fe(III) ions, etc.) on the consumption and buildup of H2O2 in oxidation of aliphatic alcohols in aqueous solutions under the effect of UV light (200–360 nm). Based on the obtained data the kinetic model of generating H2O2 has been proposed in the processes being considered.  相似文献   

4.
The complexation of iron ions with the herbicide tebuthiuron (TBH), during a solar photo-Fenton process, was investigated using cyclic voltammetry with a glassy carbon electrode. An oxidation peak was observed at +0.64 V after addition of Fe(NO3)3 to TBH solution, indicating the formation of a Fe-TBH complex, which was not observed in the presence of ferrioxalate or citrate complexes. This complexation hinders photoreduction of Fe(III), and consequently TBH degradation. The main degradation route, in the presence or absence of citric acid (in the latter case with Fe(NO3)3 only), is initiated by the hydroxylation of a terminal methyl group of the urea, indicating an identical degradation mechanism. Hydroxylation of the central methyl of urea, and of the tert-butyl group, was also observed after extended irradiation periods in the presence of citric acid, but was not observed in the presence of Fe(NO3)3, due to a slower degradation rate in the absence of the citrate complex. No intermediate, generated from opening of the thiadiazole ring, was identified under the various different conditions.  相似文献   

5.
Qiu R  Zhang D  Diao Z  Huang X  He C  Morel JL  Xiong Y 《Water research》2012,46(7):2299-2306
In this study, both Cr(VI) reduction and phenol oxidation induced by polymer-sensitized TiO2 were investigated under visible light. Study of the reaction mechanism indicated that poly(fluorene-co-thiophene) (PFT) acted as a semiconductor and was by itself able to reduce Cr(VI) under visible light irradiation. When coupled with TiO2, PFT served not only as the electron donor for Cr(VI) reduction, but also as a sensitizer. Upon irradiation by visible light, electrons in the sensitizing PFT polymer are excited and are transferred to the conduction band of TiO2. PFT-catalyzed reduction of Cr(VI) was significantly promoted by the presence of phenol, and synergism between Cr(VI) reduction and phenol degradation was demonstrated both by analysis of the FT-IR spectrum of PFT/TiO2 and by measuring the effect of repeated use of PFT/TiO2 on its photocatalytic efficiency. The results provide a cost-effective method to remove organic and inorganic pollutants simultaneously in the complex wastewater.  相似文献   

6.
Kim JY  Lee C  Cho M  Yoon J 《Water research》2008,42(1-2):356-362
Silver ions have been widely used as an effective water disinfectant or antimicrobial material for many decades. In addition, the application of silver ions in combination with other biocides, especially UV(254) (UV-C) irradiation, was reported to be effective in enhancing its germicidal activity. However, it is not yet known how UV-A (300-400 nm) or visible light irradiation, which have little or no antimicrobial activities, affect microorganism inactivation by silver ions. This study newly reports that the inactivation efficiencies of Escherichia coli and MS-2 phage by silver ions were significantly enhanced by UV-A or visible light irradiation. UV-A irradiation enhanced the inactivation of E. coli and MS-2 phage by 3.0 and 2.5 log/30 min, respectively, as compared with the simple summated value of individual applications of silver ions and UV-A. A similar trend was observed with visible light irradiation (>400 nm) although the level of enhancement was lessened. The photochemical reaction of silver-cysteine complex was suggested as a possible mechanism for this enhancement. Spectrophotometric and MALDI-TOF mass analyses support the fact that silver ions coupled with light irradiation causes critical cell damage through the complexation of silver ions with thiol (-SH) groups in structural or enzymatic proteins of the microorganisms and their subsequent photochemical destruction.  相似文献   

7.
While the photocatalytic degradation of various volatile organic compounds in conjunction with UV light has been widely reported, visible-light-induced photocatalytic degradation of low-levels of the pollutants MTBE and TCE, which have been linked to potential adverse health effects, is rarely reported. The present study examined whether visible-light-activated S- or N-doped TiO2 photocatalytic technology can be used to control indoor concentrations of MTBE and TCE. This study consists of the characterization of the doped TiO2 powders, as well as an investigation of their photocatalytic activities. In regards to both powders, a shift of the absorbance spectrum towards the visible light region was observed. An activity test suggested that these photocatalysts exhibited reasonably high degradation efficiencies towards MTBE and TCE under visible light irradiation. The degradation efficiencies of MTBE and TCE by S- and N-doped photocatalysts exceeded 75 and 80%, respectively, at input concentrations (IC) of 0.1 ppm. Degradation efficiency was dependent on both IC and relative humidity. TCE could enhance the degradation efficiency of MTBE even under visible-light irradiation. The estimated mineralization efficiencies (MEs) were comparable to those of previous studies conducted with UV/TiO2 systems. Similar to the relative degradation efficiencies, the ME of TCE was higher in comparison to that of MTBE. The CO production measured during the photocatalytic processes represented a negligible addition to indoor CO levels. These results suggest that visible-light-activated S- and N-doped TiO2 photocatalysts may prove a useful tool in the effort to improve indoor air quality.  相似文献   

8.
Degradation of the emerging contaminant ibuprofen in water by photo-Fenton   总被引:3,自引:0,他引:3  
In this study the degradation of the worldwide Non-Steroidal Anti-Inflammatory Drug (NSAID) ibuprofen (IBP) by photo-Fenton reaction by use of solar artificial irradiation was carried out. Non-photocatalytic experiments (complex formation, photolysis and UV/Vis-H2O2 oxidation) were executed to evaluate the isolated effects and additional differentiated degradation pathways of IBP. The solar photolysis cleavage of H2O2 generates hydroxylated-IBP byproducts without mineralization. Fenton reaction, however promotes hydroxylation with a 10% contamination in form of a mineralization. In contrast photo-Fenton in addition promotes the decarboxylation of IBP and its total depletion is observed. In absence of H2O2 a decrease of IBP was observed in the Fe(II)/UV-Vis process due to the complex formation between iron and the IBP-carboxylic moiety. The degradation pathway can be described as an interconnected and successive principal decarboxylation and hydroxylation steps. TOC depletion of 40% was observed in photo-Fenton degradation. The iron-IBP binding was the key-point of the decarboxylation pathway. Both decarboxylation and hydroxylation mechanisms, as individual or parallel process are responsible for IBP removal in Fenton and photo-Fenton systems. An increase in the biodegradability of the final effluent after photo-Fenton treatment was observed. Final BOD5 of 25 mg L−1 was reached in contrast to the initial BOD5 shown by the untreated IBP solution (BOD5 < 1 mg L−1). The increase in the biodegradability of the photo-Fenton degradation byproducts opens the possibility for a complete remediation with a final post-biological treatment.  相似文献   

9.
The mineralization of flumequine, an antimicrobial agent belonging to the first generation of synthetic fluoroquinolones which is detected in natural waters, has been studied by electrochemical advanced oxidation processes (EAOPs) like electro-Fenton (EF) and photoelectro-Fenton (PEF) with UVA light. The experiments were performed in a cell containing a boron-doped diamond (BDD) anode and an air-diffusion cathode to generate H2O2 at constant current. The Fe2+ ion added to the medium increased the solubility of the drug by the formation of a complex of intense orange colour and also reacted with electrogenerated H2O2 to form hydroxyl radical from Fenton reaction. Oxidant hydroxyl radicals at the BDD surface were produced from water oxidation. A partial mineralization of flumequine in a solution near to saturation with optimum 2.0 mM Fe2+ at pH 3.0 was achieved by EF. The PEF process was more powerful, giving an almost total mineralization with 94-96% total organic carbon removal. Increasing current accelerated both treatments, but with decreasing mineralization current efficiency. Comparative treatments using a real wastewater matrix led to similar degradation degrees. The kinetics for flumequine decay always followed a pseudo-first-order reaction and its rate constant, similar for both EAOPs, raised with increasing current. Generated carboxylic acids like malonic, formic, oxalic and oxamic acids were quantified by ion-exclusion HPLC. Fe(III)-oxalate and Fe(III)-oxamate complexes were the most persistent by-products under EF conditions and their quicker photolysis by UVA light explains the higher oxidation power of PEF. The release of inorganic ions such as F, NO3 and in lesser extent NH4+ was followed by ionic chromatography.  相似文献   

10.
A comparative study on the photocatalytic activities of four different catalysts, P-25 TiO2, TiO2 nanofibers, tin-doped TiO2 nanofibers under UV light irradiation at 350 nm, and coumarin (C-343) coated TiO2 nanofibers at 436 nm light emitting diodes (LED) is reported. Catalysts performance has been compared based on their reflectance spectrum and activity. A common water contaminant 4-chlorophenol was used as a substrate to compare the activity of the different catalysts under both direct and dye sensitized conditions. Results indicated that amongst the four different catalysts the activity of P-25 was the highest. However the activity of C-343 coated TiO2 nanofibers in the LED (436 nm) based reactor was competitive. Identification of reaction intermediates implied that the reaction pathways under UV (band gap) and visible (dye sensitized) irradiation were different. Nonetheless, ring opening took place in all reactions with both maleic and dihydroxymaleic have been identified as intermediates. The study indicates that ordered arrays of TiO2 irradiated by panels of arrays of low cost high intensity LEDs might be used for the design of reactors. The near monochromaticity, long life, and operation under direct currents are advantages of using LEDs.  相似文献   

11.
The (α‐FeOOH) Goethite composite is a stable and an efficient catalyst in aqueous suspension under irradiation at 365 nm and by solar light. The photocatalytic activities of this composite were evaluated using Phenol Red (PR) dye (phenolsulfonphthalein class). In the dark, controlling factors, such as the pH and the adsorption of PR on Goethite surface were evaluated (before starting the photochemical experiments). It was found that the system PR‐Goethite present a small decrease in the main band of the dye (435 nm) which was explained by the low rate of adsorption of this dye on the Goethite. Also, we note that 40% of PR decolourisation was obtained after 200 min by the system PR‐Goethite‐hydrogen peroxide (H2O2) in dark due to the formation of ?OH by thermal decomposition of H2O2 on the surface of Goethite. The effects of various experimental parameters, such as initial dye concentration, pH, photocatalyst amount, tert‐Butyl alcohol effect and H2O2 addition were investigated in the study of photodegradation of the dye. The results showed that the photodegradation of PR under UV‐A (365 nm) irradiation could be enhanced greatly in the presence of H2O2. Natural radiation tests (under sunlight) showed that degradation was faster comparing with that obtained using the artificial one at 365 nm. Studies of the mineralization using total organic carbon method under naturel light certify that this method, compatible with the environment, may be considered in the treatment of wastewater and generally in the process of removal of this kind of pollutant.  相似文献   

12.
Electrochemical advanced oxidation processes (EAOPs) are used to chemically burn non biodegradable complex organic compounds that are present in polluted effluents. A common approach involves the use of TiO2 semiconductor substrates as either photocatalytic or photoelectrocatalytic materials in reactors that produce a powerful oxidant (hydroxyl radical) that reacts with pollutant species. In this context, the purpose of this work is to develop a new TiO2 based photoanode using an optic fiber support. The novel arrangement of a TiO2 layer positioned on top of a surface modified optical fiber substrate, allowed the construction of a photoelectrochemical reactor that works on the basis of an internally illuminated approach. In this way, a semi-conductive optical fiber modified surface was prepared using 30 μm thickness SnO2:Sb films on which the photoactive TiO2 layer was electrophoretically deposited. UV light transmission experiments were conducted to evaluate the transmittance along the optical fiber covered with SnO2:Sb and TiO2 showing that 43% of UV light reached the optical fiber tip. With different illumination configurations (external or internal), it was possible to get an increase in the amount of photo-generated H2O2 close to 50% as compared to different types of TiO2 films. Finally, the electro-Fenton photoelectrocatalytic Oxidation process studied in this work was able to achieve total color removal of Azo orange II dye (15 mg L−1) and a 57% removal of total organic carbon (TOC) within 60 min of degradation time.  相似文献   

13.
The phototransformation of clarithromycin and roxithromycin, two human-used macrolide (MLs) antibiotics was investigated in surface waters. Photolysis kinetic data suggest that degradation in water would occur via the direct photolysis of the Fe(III)-MLs complexes. Hydroxyl radicals, singlet oxygen and other photooxidants generated from nitrate ions and from excited chromophores present in humic acids appeared to have only a very limited impact on the overall degradation of MLs under the adopted UV-vis irradiation conditions. A photolysis model applied to the Fe(III)-clarithromycin complex in river water showed that a half-life of 40 days was predicted under clear-sky irradiation in November, 26 days in February, and 10 in May. Direct photolysis could have a limited impact on the environmental concentrations of MLs in rivers, due to a too short water residence time but might be important in shallow lakes and lagoons. Photoinduced degradation of MLs mainly implied changes in the structure of the aglycone, probably leading to their detoxification because the pseudoerythromycin derivatives have very little antimicrobial activity.  相似文献   

14.
Degradation of estrone in aqueous solution by photo-Fenton system   总被引:4,自引:0,他引:4  
Photodegradation of estrone (E1) in aqueous solutions by UV-VIS/Fe(III)/H2O2 system (photo-Fenton system) was preliminarily investigated under a 250-W metal halide lamp (lambda > or = 313 nm). The influences such as initial pH value, initial concentration of Fe(III), H2O2 and E1 on degradation efficiency of E1 were discussed in detail. The results indicated that E1 could be decomposed efficiently in UV-VIS/Fe(III)/H2O2 system. After 160-min irradiation, the photodegradation efficiency of 18.5 micromol L(-1) E1 reached 98.4% in the solution containing 20.8 micromol L(-1) Fe(III), and 1664 micromol L(-1) H2O2 at initial pH value 3.0. The degradation efficiencies of E1 were dependent on initial pH value, Fe (III) concentration and H2O2 concentration. The degradation of four estrogens estrone (E1), estradiol (E2), 17alpha-ethynylestradiol (EE2) and diethylstibestrol (DES) in UV-VIS/Fe(III)/H2O2 system were also conducted. Under the conditions of pH 3.0, the E1 apparent kinetics equation -dC(E1)/dt=0.00093[H2O2]0.47[Fe(III)]0.63[E1]0.24 (r=0.9935, n=11) was obtained. The E1 mineralization efficiency was lower than degradation efficiency under the same conditions, which implied the mineralization occurred probably only at aromatic ring. There are several intermediate products produced during the course of E1 degradation. The comparison of the degradation efficiencies of E1, E2, EE2 and DES degradation in UV-VIS/Fe(III)/H2O2 system were also conducted, and the relative degradability among different estrogens were followed the sequence: DES>E2>EE2>E1.  相似文献   

15.
The photo-Fenton degradation of paracetamol (PCT) was evaluated using FeSO4 and the iron complex potassium ferrioxalate (FeOx) as iron source under simulated solar light. The efficiency of the degradation process was evaluated considering the decay of PCT and total organic carbon concentration and the generation of carboxylic acids, ammonium and nitrate, expressed as total nitrogen. The results showed that the degradation was favored in the presence of FeSO4 in relation to FeOx. The higher concentration of hydroxylated intermediates generated in the presence of FeSO4 in relation to FeOx probably enhanced the reduction of Fe(III) to Fe(II) improving the degradation efficiency. The degradation products were determined using liquid chromatography electrospray time-of-flight mass spectrometry. Although at different concentrations, the same intermediates were generated using either FeSO4 or FeOx, which were mainly products of hydroxylation reactions and acetamide. The toxicity of the sample for Vibrio fischeri and Daphnia magna decreased from 100% to less than 40% during photo-Fenton treatment in the presence of both iron species, except for D. magna in the presence of FeOx due to the toxicity of oxalate to this organism. The considerable decrease of the sample toxicity during photo-Fenton treatment using FeSO4 indicates a safe application of the process for the removal of this pharmaceutical.  相似文献   

16.
Wang J  Zhang G  Zhang Z  Zhang X  Zhao G  Wen F  Pan Z  Li Y  Zhang P  Kang P 《Water research》2006,40(11):2143-2150
To use solar irradiation or interior lighting efficiently, a new photocatalyst with high catalytic activity in visible light was sought. In this work, an upconversion luminescence agent, 40 CdF(2).60 BaF(2).1.0 Er(2)O(3), was synthesized and its fluorescent spectrum was determined. It is found that this upconversion luminescence agent can emit five upconversion fluorescent peaks below 387nm under the excitation of 488nm visible light. The upconversion luminescence agent has revealed an improvement over ordinary titanium dioxide (TiO(2)) in photocatalytic activity under visible light irradiation for the photocatalytic degradation of ethyl violet in aqueous solution as a model compound. The TiO(2) photocatalyst doped with upconversion luminescence agent was characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). The photocatalytic degradation of ethyl violet was tracked by UV-vis and (1)H-NMR spectra, and the influences of irradiation time, initial concentration of ethyl violet, addition amount of TiO(2) catalyst and initial pH value were also investigated. To affirm the complete mineralization, the total organic carbon (TOC) was also tested. The degradation rate of ethyl violet in the presence of doped rutile TiO(2) photocatalyst reached 87.08% at 4.0h visible light irradiation, which was obviously higher than the corresponding degradation rate (35.42%) in the presence of undoped rutile TiO(2) powder. The research results show that the upconversion luminescence agent is necessary to transform visible lights into ultraviolet lights and thus make the best use of visible lights. By calculation, the upconversion efficiency of the emission peak at 380nm was estimated to be about 0.78%. The TiO(2) powder doped upconversion luminescence agent under visible light irradiation is able to decompose the ethyl violet in aqueous solution efficiently, therefore, this method may be envisaged as a technology for treating dyes wastewaters using solar energy, especially at textile industries in developing countries.  相似文献   

17.
This study aims to assess the removal of a set of non-polar pollutants in biologically treated wastewater using ozonation, ultraviolet (UV 254 nm low pressure mercury lamp) and visible light (Xe-arc lamp) irradiation as well as visible light photocatalysis using Ce-doped TiO2. The compounds tracked include UV filters, synthetic musks, herbicides, insecticides, antiseptics and polyaromatic hydrocarbons. Raw wastewater and treated samples were analyzed using stir-bar sorptive extraction coupled with comprehensive two-dimensional gas chromatography (SBSE–CG × GC–TOF–MS). Ozone treatment could remove most pollutants with a global efficiency of over 95% for 209 μM ozone dosage. UV irradiation reduced the total concentration of the sixteen pollutants tested by an average of 63% with high removal of the sunscreen 2-ethylhexyl trans-4-methoxycinnamate (EHMC), the synthetic musk 7-acetyl-1,1,3,4,4,6-hexamethyltetrahydronaphthalene (tonalide, AHTN) and several herbicides. Visible light Ce–TiO2 photocatalysis reached ∼70% overall removal with particularly high efficiency for synthetic musks. In terms of power usage efficiency expressed as nmol kJ−1, the results showed that ozonation was by far the most efficient process, ten-fold over Xe/Ce–TiO2 visible light photocatalysis, the latter being in turn considerably more efficient than UV irradiation. In all cases the efficiency decreased along the treatments due to the lower reaction rate at lower pollutant concentration. The use of photocatalysis greatly improved the efficiency of visible light irradiation. The collector area per order decreased from 9.14 ± 5.11 m2 m−3 order−1 for visible light irradiation to 0.16 ± 0.03 m2 m−3 order−1 for Ce–TiO2 photocatalysis. The toxicity of treated wastewater was assessed using the green alga Pseudokirchneriella subcapitata. Ozonation reduced the toxicity of treated wastewater, while UV irradiation and visible light photocatalysis limited by 20–25% the algal growth due to the accumulation of reaction by-products. Three transformation products were identified and tracked along the treatments.  相似文献   

18.
Degradation of 2,4-dichlorophenol by immobilized iron catalysts   总被引:14,自引:0,他引:14  
Sabhi S  Kiwi J 《Water research》2001,35(8):1994-2002
The degradation of 2,4-Dichlorophenol (from now on 2,4-DCP) has been carried out on Nafion-Fe (1.78%) in the presence of H2O2 under visible light irradiation. A solution containing 2,4-DCP (TOC 72 mg C/L)) is seen to be mineralized in approximately 1 h in the presence of H2O2 (10 mM) under solar simulated visible light (80 mW cm-2) at pH values between 2.8 and 11. Homogeneous photo-assisted Fenton reactions were capable of mediating 2,4-DCP degradation only up to pH 5.4. The degradation kinetics of 2,4-DCP on Nafion-Fe membranes was more favorable than the one observed during Fenton photo-assisted processes at pH 2.8. The degradation of 2,4-DCP was investigated as a function of the substrate, oxidant concentration and applied light intensity. The Nafion-Fe was seen to be effective over many cycles during the photo-catalytic degradation of 2,4-DCP showing an efficient and stable performance during 2,4-DCP degradation without leaching out Fe(3+)-ions into the solution. Evidence is presented that the degradation at the surface of the Nafion-Fe membrane seems to be controlled by mass transfer and not by chemical reaction of the species in solution. The approach used to degrade 2,4-DCP is shown to be valid for other chloro-carbons like 4-chlorophenol, 2,3-chlorophenol and 2,4,5-trichlorophenol.  相似文献   

19.
Ma M  Liu R  Liu H  Qu J 《Water research》2012,46(1):73-81
This study developed a novel KMnO4-Fe(II) process to remove the cells of Microcystis aeruginosa, and the mechanisms involved in have been investigated. At KMnO4 doses of 0-10.0 μM, the KMnO4-Fe(II) process showed 23.4-53.3% higher efficiency than the KMnO4-Fe(III) process did. This was first attributed to the moderate pre-oxidation of M. aeruginosa by KMnO4, achieved by dosing Fe(II) after a period of pre-oxidation, to cease the further release of intracellular organic matter (IOM) and the degradation of dissolved organic matter (DOM). The extensive exposure of M. aeruginosa to KMnO4 in KMnO4-Fe(III) process led to high levels and insufficient molecular weight of DOM, inhibiting the subsequent Fe(III) coagulation. Additionally, Fe(II) contributed to lower levels of the in-situ formed MnO2, the reduction product of KMnO4 which adversely affected algae removal by Fe(III) coagulation. However, the in-situ formed Fe(III), which was derived from the oxidation of Fe(II) by KMnO4, in-situ MnO2, and dissolved oxygen, dominated the remarkably high efficiency of KMnO4-Fe(II) process with respect to the removal of M. aeruginosa. On one hand, in-situ formed Fe(III) had more reactive surface area than pre-formed Fe(III). On the other hand, the continuous introduction of fresh Fe(III) coagulant showed higher efficiency than one-off dosage of coagulant to destabilize M. aeruginosa cells and to increase the flocs size. Moreover, the MnO2 precipitated on algae cell surfaces and contributed to the formation of in-situ formed Fe(III), which may act as bridges to enhance the removal of M. aeruginosa.  相似文献   

20.
A study was performed to determine the effect of pH, alkalinity, natural organic matter (NOM) and dissolved oxygen in the performance of nitrogen and fluorine doped TiO2 (NF-TiO2) for the degradation of hepatotoxin microcystin-LR (MC-LR) in synthetic and natural water under visible light irradiation. The initial degradation rate of MC-LR was fastest under acidic conditions (3.50 ± 0.02 × 10−3 μM min−1 at pH 3.0) and decreased to 2.29 ± 0.07 × 10−3 and 0.54 ± 0.02 × 10−3 μM min−1 at pH 5.7 and 7.1, respectively. Attractive forces between the opposite charged MC-LR and NF-TiO2 are likely responsible for the enhancement in the photocatalytic decomposition of MC-LR resulting from increased interfacial adsorption. For carbonate buffered solutions, the photocatalytic activity of NF-TiO2 was reduced when increasing the carbonate concentration up to 150 mg CaCO3 L−1. The scavenging of radical species by the bicarbonate ion at pH 7.1 is discussed. In the presence of NOM, the degradation rates decreased as pH and initial concentration of the NOM increased. The inhibition was higher with fulvic acid than humic acid under alkaline conditions. Oxygenated solution yields higher NF-TiO2 photocatalytic degradation of MC-LR compared to nitrogen sparged solution at pH 5.7. The involvement of specific reactive oxygen species implicated in the photodegradation is proposed. Finally, no significant degradation is observed with various natural waters spiked with MC-LR under visible light (λ > 420 nm) but high removal was achieved with simulated solar light. This study provides a better understanding of the interactions and photocatalytic processes initiated by NF-TiO2 under visible and solar light. The results indicate solar photocatalytic oxidation is a promising technology for the treatment of water contaminated with cyanotoxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号