首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous exposure studies have shown considerable inter-subject variability in personal-ambient associations. This paper investigates exposure factors that may be responsible for inter-subject variability in these personal-ambient associations. The personal and ambient data used in this paper were collected as part of a personal exposure study conducted in Boston, MA, during 1999-2000. This study was one of a group of personal exposure panel studies funded by the U.S. Environmental Protection Agency's National Exposure Research Laboratory to address areas of exposure assessment warranting further study, particularly associations between personal exposures and ambient concentrations of particulate matter and gaseous co-pollutants. Twenty-four-hour integrated personal, home indoor, home outdoor and ambient sulfate, elemental carbon (EC), PM2.5, ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide were measured simultaneously each day. Fifteen homes in the Boston area were measured for 7 days during winter and summer. A previous paper explored the associations between personal-indoor, personal-outdoor, personal-ambient, indoor-outdoor, indoor-ambient and outdoor-ambient PM2.5, sulfate and EC concentrations. For the current paper, factors that may affect personal exposures were investigated, while controlling for ambient concentrations. The data were analyzed using mixed effects regression models. Overall personal-ambient associations were strong for sulfate during winter (p < 0.0001) and summer (p < 0.0001) and PM2.5 during summer (p < 0.0001). The personal-ambient mixed model slope for PM2.5 during winter but was not significant at p = 0.10. Personal exposures to most pollutants, with the exception of NO2, increased with ventilation and time spent outdoors. An opposite pattern was found for NO2 likely due to gas stoves. Personal exposures to PM2.5 and to traffic-related pollutants, EC and NO2, were higher for those individuals living close to a major road. Both personal and indoor sulfate and PM2.5 concentrations were higher for homes using humidifiers. The impact of outdoor sources on personal and indoor concentrations increased with ventilation, whereas an opposite effect was observed for the impact of indoor sources.  相似文献   

2.
Three monthly 24-hour samples of airborne aerosols (PM10 and PM2.5) were collected at an urban and a rural site of the North central, semi-arid part of India during May 2006 to March 2008. Seven trace metals (Pb, Zn, Ni, Fe, Mn, Cr and Cu) were determined for both sizes. The annual mean concentration for PM10 was 154.2 µg/m3 and 148.4 µg/m3 at urban and rural sites whereas PM2.5 mean concentration was 104.9 µg/m3 and 91.1 µg/m3 at urban and rural sites, respectively. Concentrations of PM10 and PM2.5 have been compared with prescribed WHO standards and NAAQS given by CPCB India and were found to be higher. Weekday/weekend variations of PM10 and PM2.5 have been studied at both monitoring sites. Lower particulate pollutant levels were found during weekends, which suggested that anthropogenic activities are major contributor of higher ambient particulate concentration during weekdays. Significant seasonal variations of particulate pollutants were obtained using the daily average concentration of PM10 and PM2.5 during the study period. PM2.5/PM10 ratios at urban and rural sites were also determined during the study period, which also showed variation between the seasons. Three factors have been identified using Principal Component Analysis at the sampling sites comprising resuspension of road dust due to vehicular activities, solid waste incineration, and industrial emission at urban site whereas resuspension of soil dust due to vehicular emission, construction activities and wind blown dust carrying industrial emission, were common sources at rural site.  相似文献   

3.
With the aim to determine the presence of individual nitro-PAH contained in particles in the atmosphere of Mexico City, a monitoring campaign for particulate matter (PM10 and PM2.5) was carried out in Northern Mexico City, from April 2006 to February 2007. The PM10 annual median concentration was 65.2 μg m− 3 associated to 7.6 μg m− 3 of solvent-extractable organic matter (SEOM) corresponding to 11.4% of the PM10 concentration and 38.6 μg m− 3 with 5.9 μg m− 3 SEOM corresponding to 15.2% for PM2.5. PM concentration and SEOM varied with the season and the particle size. The quantification of nitro-polycyclic aromatic hydrocarbons (nitro-PAH) was developed through the standards addition method under two schemes: reference standard with and without matrix, the former giving the best results. The recovery percentages varied with the extraction method within the 52 to 97% range depending on each nitro-PAH. The determination of the latter was effected with and without sample purification, also termed fractioning, giving similar results. 8 nitro-PAH were quantified, and their sum ranged from 111 to 819 pg m− 3 for PM10 and from 58 to 383 pg m− 3 for PM2.5, depending on the season. The greatest concentration was for 9-Nitroanthracene in PM10 and PM2.5, detected during the cold-dry season, with a median (10th-90th percentiles) concentration in 235 pg m− 3 (66-449 pg m− 3) for PM10 and 73 pg m− 3 (18-117 pg m− 3) for PM2.5. The correlation among mass concentrations of the nitro-PAH and criteria pollutants was statistically significant for some nitro-PAH with PM10, SEOM in PM10, SEOM in PM2.5, NOX, NO2 and CO, suggesting either sources, primary or secondary origin. The measured concentrations of nitro-PAH were higher than those reported in other countries, but lower than those from Chinese cities. Knowledge of nitro-PAH atmospheric concentrations can aid during the surveillance of diseases (cardiovascular and cancer risk) associated with these exposures.  相似文献   

4.
Animal studies have shown exposure to diesel exhaust particles (DEPs) to induce production of reactive oxygen species (ROSs) and increase levels of 8-hydroxydeoxyquanosine (8-OHdG). Controversial results have been obtained regarding the effects of workplace exposure on urinary 8-OHdG level. This study assessed concentrations of environmental PM2.5 in DEP (DEP2.5), personal DEP2.5 and urinary 8-OHdG of diesel engine exhaust emission inspector (inspector) at a diesel vehicle emission inspection station (inspection station). The analysis specifically focuses on the factors that influence inspector urinary 8-OHdG. Repeated-measures study design was used to sample for five consecutive days. A total of 25 environmental PM2.5 measurements were analyzed at 5 different locations by using a dichotomous sampler, and a total of 55 personal PM2.5 measurements were analyzed from inspectors by using PM2.5 personal sampler. During the sampling period, a total of 110 pre- and post-work urine samples from inspectors, and 32 samples from the control group were collected. Following age and sex matching between the inspectors and the control group, levels of urinary 8-OHdG were analyzed.Environmental and personal concentrations of DEP2.5 were 107.25 ± 39.76 (mean ± SD) and 155.96 ± 75.70 μg/m3, respectively. Also, the concentration of urinary 8-OHdG differed significantly between inspector and control non-smokers, averaging 14.05 ± 12.71 and 6.58 ± 4.39 μg/g creatinine, respectively. Additionally, urinary 8-OHdG concentrations were associated with diesel exposure after controlling for smoking and cooking at home. Compared with the control group, the inspector displayed significantly increased levels of urinary 8-OHdG. Diesel exhaust is the single pollutant involved in the exposure of DEP2.5 at the inspection station, as confirmed by the final results.  相似文献   

5.
Asian dust storms (ADS) originating from the arid deserts of Mongolia and China are a well-known springtime meteorological phenomenon throughout East Asia. The ventilation systems in office utilize air from outside and therefore it is necessary to understand how these dust storms affect the concentrations of PM2.5 and PM10 in both the indoor and outdoor air. We measured dust storm pollution particles in an office building using a direct-reading instrument (PC-2 Quartz Crystal Microbalance, QCM) that measured particle size and concentration every 10 min for 1 h, three times a day. A three-fold increase in the concentrations of PM2.5 and PM10 in the indoor and outdoor air was recorded during the dust storms. After adjusting for other covariates, autoregression models indicated that PM2.5 and PM10 in the indoor air increased significantly (21.7 μg/m3 and 23.0 μg/m3 respectively) during dust storms. The ventilation systems in high-rise buildings utilize air from outside and therefore the indoor concentrations of fine and coarse particles in the air inside the buildings are significantly affected by outside air pollutants, especially during dust storms.  相似文献   

6.
Fine particulate air pollution and daily mortality in Shenyang, China   总被引:2,自引:0,他引:2  
Fine particulate matter (PM2.5) is not a criteria pollutant in China, and few studies were conducted in the country to investigate the health impact of PM2.5. In this study, we did a time-stratified case-crossover analysis to examine the association between PM2.5 and daily mortality in Shenyang, an industrial center in northeast China. Daily mortality, air pollution and weather data from August 1, 2006 to December 31, 2008 in Shenyang were collected. A time-stratified case-crossover approach was used to estimate the association of PM2.5 with both total and cause-specific mortality. Controls were selected as matched days of the week in the same month. Potential effect modifiers, such as age, gender, and season, were also examined. We found significant associations between PM2.5 and daily mortality in Shenyang. A 10 μg/m3 increment in the 2-day moving average (lag 01) concentrations of PM2.5 corresponded to 0.49% (95% CI: 0.19%, 0.79%), 0.53% (95% CI: 0.09%, 0.97%), and 0.97% (95% CI: 0.01%, 1.94%) increase of total, cardiovascular, and respiratory mortality, respectively. The associations appeared to be stronger in older people (aged ≥ 75 years), in females and during the warm season. To our knowledge, this is the longest PM2.5 health study in time duration in China. Our findings provide new information on the adverse health effects of PM2.5, and may have implications for environmental policy making and standard setting in China.  相似文献   

7.
A woodstove changeout program was conducted within 16 homes on the Nez Perce Reservation in Idaho to evaluate the effectiveness of a woodstove changeout in improving indoor air quality. PM2.5 samples were collected within the common area (rooms where the stoves were located) of the homes both before and after the installation of cleaner burning EPA-certified stoves. During the pre- and post-changeout sampling, indoor PM2.5 mass, Organic Carbon (OC), Elemental Carbon (EC), and chemical markers of woodsmoke (including levoglucosan) were measured.Sampling results from this study showed that indoor air quality was improved in 10 of the 16 homes following the woodstove changeout and educational training program. Five homes had increased indoor PM2.5 concentrations following the changeout, while one home did not have final PM2.5 results for comparison. The median pre-changeout PM2.5 mass (as measured by TSI DustTraks) was 39.2 μg/m3, with a median post-changeout concentration of 19.0 μg/m3. This resulted in an overall 52% reduction in median indoor PM2.5, a 36% reduction in mean indoor PM2.5 and a 60% reduction in PM2.5 spikes when the old stoves were replaced with EPA-certified stoves. Another significant finding of the project was that targeted education and outreach is a critical component of the overall success of the program. Effective messaging to homeowners on proper use of their new stove is a necessary task of a woodstove changeout.  相似文献   

8.

Background

Saharan dust outbreaks are a common phenomenon in the Madrid atmosphere. The current Directive 2008/50 CE governing air quality in European cities, draws no distinction between which particulate matter (PM10, PM2.5 or PM10-2.5) would be the best indicator on days with/without Saharan dust intrusions. This study sought to identify the role played by Saharan dust in the relationship between particulate matter (PM10, PM2.5 and PM10-2.5) concentrations and daily mortality among the elderly in the city of Madrid.

Methods

We conducted an ecological longitudinal time-series study on daily mortality among the over-75 age group, from 2003 to 2005. Poisson regression models were constructed for days with and without Saharan dust intrusions. The following causes of daily mortality were analysed: total organic causes except accidents (International Classification of Diseases-10th revision (ICD-10): A00-R99); circulatory causes (ICD-10: I00-I99); and respiratory causes (ICD-10: J00-J99). Daily mean PM10, PM2.5 and PM10-2.5 levels were used as independent variables. Control variables were: other ambient pollutants (chemical, biotic and acoustic); trend; seasonalities; influenza epidemics; and autocorrelations between mortality series.

Results

While daily mean PM2.5 concentrations in Madrid displayed a significant statistical association with daily mortality for all the above causes on days without Saharan dust intrusions, this association was not in evidence for PM10 or PM10-2.5 in the multivariate models. The relative risks (RRs) obtained for an increase of 10 μg/m3 in PM2.5 concentrations were: 1.023 (1.010-1.036) for total organic causes; 1.033 (1.031-1.035) for circulatory causes; and 1.032 (1.004-1.059) for respiratory causes. On Saharan dust days, a significant statistical association was detected between PM10 (though not PM2.5 or PM10-2.5) and mortality for all 3 causes analysed, with RRs statistically similar to those reported for PM2.5.

Conclusions

The best air quality indicators for evaluating the short-term health effects of particulate matter in Madrid are therefore PM10 concentrations on days with, and PM2.5 concentrations on days without Saharan dust outbreaks. This fact should be taken into account in a European Directive regulating ambient air quality in almost all countries in the Mediterranean area.  相似文献   

9.
The aim of the present work is to study the occupants' exposure to fine particulate concentrations in ten nightclubs (NCs) in Athens, Greece. Measurements of PM1 and PM2.5 were made in the outdoor and indoor environment of each NC. The average indoor PM1 and PM2.5 concentrations were found to be 181.77 μg m 3 and 454.08 μg m 3 respectively, while the corresponding outdoor values were 11.04 μg m 3 and 32.19 μg m 3. Ventilation and resuspension rates were estimated through consecutive numerical experiments with an indoor air quality model and were found to be remarkably lower than the minimum values recommended by national standards. The relative effects of the ventilation and smoking on the occupants' exposures were examined using multiple regression techniques. It was found that given the low ventilation rates, the effect of smoking as well as the occupancy is of the highest importance. Numerical evaluations showed that if the ventilation rates were at the minimum values set by national standards, then the indoor exposures would be reduced at the 70% of the present exposure values.  相似文献   

10.
Variations in pulmonary function tests (PFTs) due to agriculture crop residue burning (ACRB) on children between the age group of 10 to 13 years and the young between 20 to 35 years are studied. The effects of exposure to smoke due to rice-wheat crop residue burning on pulmonary functions like Force Vital Capacity (FVC), Force Expiratory Volume in one second (FEV1), Peak Expiratory Flow (PEF) and Force Expiratory Flow in 25 to 75% of FVC (FEF25-75%) on 40 healthy subjects of rural/agricultural area of Sidhuwal village of Patiala City were investigated for a period from August 2008 to July 2009. Measurements were taken by spirometry according to the American Thoracic Society standards. High volume sampler (HVS) and Anderson Impactor were used to measure the concentration levels of SPM, PM10 and PM2.5 in ambient air of the Sidhuwal village. A significant increase in the concentration levels of SPM, PM10 and PM2.5 was observed due to which PFTs of the subjects showed a significant decrease in their values, more prominently in the case of children. PFTs of young subjects recovered up to some extent after the completion of burning period but the PFT values of children remained significantly lower (p < 0.001) even after the completion of burning episodes. Small size particulate matter (PM2.5 and PM10) affected the PFTs to a large extent in comparison to the large size particulate matter (SPM). The study indicates that ACRB is a serious environmental health hazard and children are more sensitive to air pollution, as ACRB poses some unrecoverable influence on their PFTs.  相似文献   

11.
The inorganic main elements, trace elements and PAHs were determined from selected PM1, PM2.5 and PM10 samples collected at the Nordic background station in Virolahti during different seasons and during the wildfire episodes in 2006. Submicron particles are those most harmful to human beings, as they are able to penetrate deep into the human respiratory system and may cause severe health effects. About 70-80%, of the toxic trace elements, like lead, cadmium, arsenic and nickel, as well as PAH compounds, were found in particles smaller than 1 µm. Furthermore, the main part of the copper, zinc, and vanadium was associated with submicron particles. In practice, all the PAHs found in PM10 were actually in PM2.5. For PAHs and trace elements, it is more beneficial to analyse the PM2.5 or even the PM1 fraction instead of PM10, because exclusion of the large particles reduces the need for sample cleaning to minimize the matrix effects during the analysis. During the wildfire episodes, the concentrations of particles smaller than 2.5 µm, as well as those of submicron particles, increased, and also the ratio PM1/PM10 increased to about 50%. On the fire days, the mean potassium concentration was higher in all particle fractions, but ammonium and nitrate concentrations rose only in particles smaller than 1.0 µm. PAH concentrations rose even to the same level as in winter.  相似文献   

12.
To investigate the potential role of ammonia in ion chemistry of PM2.5 aerosol, measurements of PM2.5 (particulate matter having aerodynamic diameter < 2.5 µm) along with its ionic speciation and gaseous pollutants (sulfur dioxide (SO2), nitrogen oxides (NOx), ammonia (NH3) and nitric acid (HNO3)) were undertaken in two seasons (summer and winter) of 2007-2008 at four sampling sites in Kanpur, an urban-industrial city in the Ganga basin, India. Mean concentrations of water-soluble ions were observed in the following order (i) summer: SO42− (26.3 µg m− 3) > NO3 (16.8) > NH4+ (15.1) > Ca2+ (4.1) > Na+ (2.4) > K+ (2.1 µg m− 3) and (ii) winter: SO42− (28.9 µg m− 3) > NO3 (23.0) > NH4+ (16.4) > Ca2+(3.4) > K+(3.3) > Na+ (3.2 µg m− 3). The mean molar ratio of NH4+ to SO42− was 2.8 ± 0.6 (mostly >2), indicated abundance of NH3 to neutralize H2SO4. The excess of NH4+ was inferred to be associated with NO3 and Cl. Higher sulfur conversion ratio (Fs: 58%) than nitrogen conversion ratio (Fn: 39%) indicated that SO42− was the preferred secondary species to NO3. The charge balance for the ion chemistry of PM2.5 revealed that compounds formed from ammonia as precursor are (NH4)2SO4, NH4NO3 and NH4Cl. This study conclusively established that while there are higher contributions of NH4+, SO42− to PM2.5 in summer but for nitrates (in particulate phase), it is the winter season, which is critical because of low temperatures that drives the reaction between ammonia and HNO3 in forward direction for enhanced nitrate formation. In summary, inorganic secondary aerosol formation accounted for 30% mass of PM2.5 and any particulate control strategy should include optimal control of primary precursor gases including ammonia.  相似文献   

13.
Carbonaceous characteristics of atmospheric particulate matter in Hong Kong   总被引:1,自引:0,他引:1  
To determine the characteristic of carbonaceous species in atmospheric particles in Hong Kong, PM10 and PM2.5 samples were collected using high volume (hi-vol.) air samplers from November 2000 to February 2001. The organic carbon (OC) and elemental carbon (EC) were analyzed by the selective thermal manganese dioxide oxidation (TMO) method. The ratios of PM2.5/PM10 mass ratios were 0.61, 0.78 and 0.53 for particulate matter collected at PolyU station (PolyU, near a major traffic corridor), Kwun Tong station (KT, mixed residential/commercial/industrial) and the Hok Tsui background station (HT), respectively. These results indicate that the PM2.5 concentrations constitute the majority of the PM10 concentrations, especially in urban and industrial areas of Hong Kong. The average concentrations at the three sites ranged from 73.11 to 83.52 μg/m3 for PM10 and from 42.37 to 57.38 μg/m3 for PM2.5. The highest daily mass concentrations of PM10 and PM2.5 were 125.89 μg/m3 and 116.89 μg/m3 at KT, respectively. The correlation between PM10 and PM2.5 was high at KT and HT (r>0.9, P<0.01). This means that the sources of PM10 and PM2.5 may be the same at both sites. The highest mean concentration of OC (12.02 μg/m3) and EC (6.86 μg/m3) in PM10 was found at the PolyU among the three sites. For PM2.5, the highest mean concentration of OC (10.16 μg/m3) was at KT while the highest mean concentration of EC (7.95 μg/m3) was at PolyU. However, the background concentrations at HT were higher than another background area, Kosan, Korea. Transportation of pollutants from the Asian continent may be responsible for the elevations of EC+OC at the remote site. More than 74% of the EC and more than 79% of the OC were found in the PM2.5 fraction at the three sampling locations. At PolyU station, PM2.5 consisted of 18.18% OC and 11.16% EC while 17.70% OC and 8.81% EC were found in KT station. Thus OC and EC are major constituents of aerosols in Hong Kong. OC/EC ratios for PM10 and PM2.5 were less than 2 at PolyU and KT stations while the ratio exceeded 3 at HT background station. This indicates that OC measured in the urban area may be emitted directly as a primary aerosol.  相似文献   

14.
Ambient daytime and nighttime PM10 and PM2.5 samples were collected in parallel at a kerbside in Dar es Salaam in August and September 2005 (dry season) and in April and May 2006 (wet season). All samples were analyzed for the particulate matter mass, for organic, elemental, and total carbon (OC, EC, and TC), and for water-soluble OC (WSOC). The average PM10 and PM2.5 mass concentrations and associated standard deviations were 76 ± 32 µg/m3 and 26 ± 7 µg/m3 for the 2005 dry season and 52 ± 27 µg/m3 and 19 ± 10 µg/m3 for the 2006 wet season campaign. On average, TC accounted for 29% of the PM10 mass and 49% of the PM2.5 mass for the 2005 dry season campaign and the corresponding values for the 2006 wet season campaign were 35% and 59%. There was little difference between the two campaigns for the WSOC/OC ratios with the PM2.5 fraction having higher ratios than the PM10 fraction during each campaign. Also for EC/TC higher ratios were noted in PM2.5 than in PM10, but the ratios were substantially larger in the 2006 wet season than in the 2005 dry season. The large EC/TC ratios (means 0.22-0.38) reflect the substantial impact from traffic at Dar es Salaam, as was also apparent from the clear diurnal variation in OC levels, with higher values during the day. A simple source apportionment approach was used to apportion the OC to traffic and charcoal burning. On average, 70% of the PM10 OC was attributed to traffic and 30% to charcoal burning in both campaigns. A definite explanation for the substantially larger EC/TC ratios in the 2006 campaign as compared to the 2005 campaign is not available.  相似文献   

15.
Indoor particle number and PM2.5 concentrations were investigated in a radio station surrounded by busy roads. Two extensive field measurement campaigns were conducted to determine the critical parameters affecting indoor air quality. The results indicated that indoor particle number and PM2.5 concentrations were governed by outdoor air, and were significantly affected by the location of air intake and design of HVAC system. Prior to the upgrade of the HVAC system and relocation of the air intake, the indoor median particle number concentration was 7.4×103 particles/cm3 and the median PM2.5 concentration was 7 μg/m3. After the relocation of air intake and the redesign of the HVAC system, the indoor particle number concentration was between 2.3×103 and 3.4×103 particles/cm3, with a median value of 2.7×103 particles/cm3, and the indoor PM2.5 concentration was in the range of 3–5 μg/m3, with a median value of 4 μg/m3. By relocating the air intake of the HVAC, the outdoor particle number and PM2.5 concentrations near the air intake were reduced by 35% and 55%, respectively. In addition, with the relocation of air intake and the redesign of the HVAC system, the particle number penetration rate was reduced from 42% to 14%, and the overall filtration efficiency of the HVAC system (relocation of air intake, pre-filter, AHU and particle losses in the air duct) increased from 58% to 86%. For PM2.5, the penetration rate after the upgrade was approximately 18% and the overall filtration efficiency was 82%. This study demonstrates that by using a comprehensive approach, including the assessment of outdoor conditions and characterisation of ventilation and filtration parameters, satisfactory indoor air quality can be achieved, even for those indoor environments facing challenging outdoor air conditions.  相似文献   

16.
A longitudinal study on spatial and temporal behavior of particles less than 2.5 μm (PM2.5), solvent extracted organic matter (SEOM), polycyclic aromatic hydrocarbons (PAH), n-alkanes and nitro-PAH was carried out for a full year in 2006, at five sites simultaneously around the Metropolitan Zone of Mexico Valley (MZMV). There is rather uniform distribution of PM2.5 and SEOM in the MZMV regarding gravimetric mass concentration, while some specific organic chemical components showed mass heterogeneity. The highest mass concentrations of target compounds occurred in the dry seasons with respect to the rainy season. Bonfires and fireworks are probably responsible for extreme values of PM2.5, SEOM and PAH (≥ 228 g mol− 1). Benzo[ghi]perylene was the most abundant PAH, with C24-C26 the most abundant n-alkanes and 2-nitrofluoranthene and 9-nitroanthracene the most abundant nitro-PAH. The northeast zone was the area with the greatest presence of sources of incomplete diesel combustion, while the central for gasoline combustion. In the southwest, the biogenic sources were more abundant over the anthropogenic sources. This was opposite to the other sites. Factor analysis allowed us to relate different compounds to emitting sources. Three main factors were associated with combustion, pyrolysis and biogenic primary sources while the other factors were associated with secondary organic aerosol formation and industry. Correlation analyses indicated that SEOM originates from different primary emission sources or is formed by different processes than the other variables, except in southwest. Associations among variables suggest that PM2.5 in the northwest and in the southeast originated mainly from primary emissions or consisted of primary organic compounds. PM2.5 in the northeast, central and southwest contains a greater proportion of secondary organic compounds, with the less oxidized organic aerosols in the northeast and the most aged organic aerosol in the southwest. This follows the trends in the prevailing wind directions in MZMV during 2006.  相似文献   

17.
PM2.5 chemical composition in Hong Kong: urban and regional variations   总被引:1,自引:0,他引:1  
Chemically speciated PM2.5 measurements were made at roadside, urban, and rural background sites in Hong Kong for 1 year during 2000/2001 to determine the spatial and temporal variations of PM2.5 mass and chemical composition in this highly populated region. Annual average PM2.5 concentrations at the urban and rural sites were 34.1 and 23.7 microg m(-3), respectively, approximately 50-100% higher than the United States' annual average National Ambient Air Quality Standard (NAAQS) of 15 microg m(-3). Daily PM2.5 concentrations exceeded the U.S. 24-h NAAQS of 65 microg m(-3) on 19 days, reaching 131+/-8 microg m(-3) at the roadside site on 02/28/2001. Carbonaceous aerosol is the largest contributor to PM2.5 mass (explaining 52-75% of PM2.5 mass at the two urban sites and 32% at the background site), followed by ammonium sulfate (ranging from 23% to 37% at the two urban sites and 51% at the background site). Ammonium sulfate and crustal concentrations showed more uniform spatial distributions, while the largest urban-rural contrasts found in carbonaceous aerosol (likely due to emissions from on-road gasoline and diesel vehicles). Marine influences accounted for 7% of the mass at the background site (more than twice as much as at the two urban sites). Ternary diagrams are utilized to illustrate the different spatial patterns.  相似文献   

18.
The multi-criteria decision making methods, Preference Ranking Organization METHods for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA), and the two-way Positive Matrix Factorization (PMF) receptor model were applied to airborne fine particle compositional data collected at three sites in Hong Kong during two monitoring campaigns held from November 2000 to October 2001 and November 2004 to October 2005. PROMETHEE/GAIA indicated that the three sites were worse during the later monitoring campaign, and that the order of the air quality at the sites during each campaign was: rural site > urban site > roadside site. The PMF analysis on the other hand, identified 6 common sources at all of the sites (diesel vehicle, fresh sea salt, secondary sulphate, soil, aged sea salt and oil combustion) which accounted for approximately 68.8 ± 8.7% of the fine particle mass at the sites. In addition, road dust, gasoline vehicle, biomass burning, secondary nitrate, and metal processing were identified at some of the sites. Secondary sulphate was found to be the highest contributor to the fine particle mass at the rural and urban sites with vehicle emission as a high contributor to the roadside site. The PMF results are broadly similar to those obtained in a previous analysis by PCA/APCS. However, the PMF analysis resolved more factors at each site than the PCA/APCS. In addition, the study demonstrated that combined results from multi-criteria decision making analysis and receptor modelling can provide more detailed information that can be used to formulate the scientific basis for mitigating air pollution in the region.  相似文献   

19.

Introduction

Owing to their small size, fine particles, i.e., those having a diameter ≤ 2.5 μm (PM2.5), have a high alveolar penetration capacity, thereby triggering a local inflammatory process with circulatory repercussion. Despite being linked to respiratory and cardiovascular morbidities, there is limited evidence of an association between this type of particulate matter and short-term increases in mortality.

Objective

The aim of this study was to analyse and quantify the short-term impact of PM2.5 on daily mortality due to diseases of the circulatory system, registered in Madrid from 1 January 2003 to 31 December 2005.

Methods

An ecological longitudinal time-series study was conducted, with risks being quantified by means of Poisson regression models. As a dependent variable, we took daily mortality registered in Madrid from 1 January 2003 to 31 December 2005, attributed to all diseases of the circulatory system as classified under heads I00-I99 of the International Classification of Diseases-10th revision (ICD-10) and broken down as follows: I21, acute myocardial infarction (AMI); I20, I22-I25, other ischemic heart diseases; and I60-I69, cerebrovascular diseases. The independent variable was daily mean PM2.5 concentration. The other variables controlled for were: chemical pollution (PM10, O3, SO2, NO2 and NOx); acoustic and biotic pollution; influenza; minimum and maximum temperatures; seasonalities; trend; and autocorrelation of the series.

Results

A linear relationship was observed between PM2.5 levels and mortality due to diseases of the circulatory system. For every increase of 10 μg/m3 in daily mean PM2.5 concentration, the relative risks (RR) were as follows: for overall circulatory mortality, associations were established at lags 2 and 6, with RR of 1.022 (1.005-1.039) and 1.025 (1.007-1.043) respectively; and for AMI mortality, there was an association at lag 6, with an RR of 1.066 (1.032-1.100). The corresponding attributable risks percent (AR%) were 2.16%, 2.47% and 6.21% respectively. No statistically significant association was found with other ischemic heart diseases or with cerebrovascular diseases.

Conclusion

PM2.5 concentrations are an important risk factor for daily circulatory-cause mortality in Madrid. From a public health point of view, the planning and implementation of specific measures targeted at reducing these levels constitute a pressing need.  相似文献   

20.
Current methods of air pollution modelling do not readily meet the needs of air pollution mapping for short-term (i.e. daily) exposure studies. The main limiting factor is that for those few models that couple with a GIS there are insufficient tools for directly mapping air pollution both at high spatial resolution and over large areas (e.g. city wide). A simple GIS-based air pollution model (STEMS-Air) has been developed for PM10 to meet these needs with the option to choose different exposure averaging periods (e.g. daily and annual). STEMS-Air uses the grid-based FOCALSUM function in ArcGIS in conjunction with a fine grid of emission sources and basic information on meteorology to implement a simple Gaussian plume model of air pollution dispersion. STEMS-Air was developed and validated in London, UK, using data on concentrations of PM10 from routinely available monitoring data. Results from the validation study show that STEMS-Air performs well in predicting both daily (at four sites) and annual (at 30 sites) concentrations of PM10. For daily modelling, STEMS-Air achieved r2 values in the range 0.19-0.43 (p < 0.001) based solely on traffic-related emissions and r2 values in the range 0.41-0.63 (p < 0.001) when adding information on ‘background’ levels of PM10. For annual modelling of PM10, the model returned r2 in the range 0.67-0.77 (P < 0.001) when compared with monitored concentrations. The model can thus be used for rapid production of daily or annual city-wide air pollution maps either as a screening process in urban air quality planning and management, or as the basis for health risk assessment and epidemiological studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号