首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PM2.5 (particle with an aerodynamic diameter less than 2.5 µm) was measured in different microenvironments of Hong Kong (including one urban tunnel, one Hong Kong/Mainland boundary roadside site, two urban roadside sites, and one urban ambient site) in 2003. The concentrations of organic carbon (OC), elemental carbon (EC), water-soluble ions, and up to 40 elements (Na to U) were determined. The average PM2.5 mass concentrations were 229 ± 90, 129 ± 95, 69 ± 12, 49 ± 18 µg m− 3 in the urban tunnel, cross boundary roadside, urban roadside, and urban ambient environments, respectively. Carbonaceous particles (sum of organic material [OM] and EC) were the dominant constituents, on average, accounting for ∼ 82% of PM2.5 emissions in the tunnel, ∼ 70% at the three roadside sites, and ∼ 48% at the ambient site, respectively. The OC/EC ratios were 0.6 ± 0.2 and 0.8 ± 0.1 at the tunnel and roadside sites, respectively, suggesting carbonaceous aerosols were mainly from vehicle exhausts. Higher OC/EC ratio (1.9 ± 0.7) occurred at the ambient site, indicating contributions from secondary organic aerosols. The PM2.5 emission factor for on-road diesel-fueled vehicles in the urban area of Hong Kong was 257 ± 31 mg veh− 1 km− 1, with a composition of ∼ 51% EC, ∼ 26% OC, and ∼ 9% SO4=. The other inorganic ions and elements made up ∼ 11% of the total PM2.5 emissions. OC composed the largest fraction (∼ 51%) in gasoline and liquid petroleum gas (LPG) emissions, followed by EC (∼ 19%). Diesel engines showed higher emission rates than did gasoline and LPG engines for most pollutants, except for V, Br, Sb, and Ba.  相似文献   

2.
Asian dust storms (ADS) originating from the arid deserts of Mongolia and China are a well-known springtime meteorological phenomenon throughout East Asia. The ventilation systems in office utilize air from outside and therefore it is necessary to understand how these dust storms affect the concentrations of PM2.5 and PM10 in both the indoor and outdoor air. We measured dust storm pollution particles in an office building using a direct-reading instrument (PC-2 Quartz Crystal Microbalance, QCM) that measured particle size and concentration every 10 min for 1 h, three times a day. A three-fold increase in the concentrations of PM2.5 and PM10 in the indoor and outdoor air was recorded during the dust storms. After adjusting for other covariates, autoregression models indicated that PM2.5 and PM10 in the indoor air increased significantly (21.7 μg/m3 and 23.0 μg/m3 respectively) during dust storms. The ventilation systems in high-rise buildings utilize air from outside and therefore the indoor concentrations of fine and coarse particles in the air inside the buildings are significantly affected by outside air pollutants, especially during dust storms.  相似文献   

3.
With the aim to determine the presence of individual nitro-PAH contained in particles in the atmosphere of Mexico City, a monitoring campaign for particulate matter (PM10 and PM2.5) was carried out in Northern Mexico City, from April 2006 to February 2007. The PM10 annual median concentration was 65.2 μg m− 3 associated to 7.6 μg m− 3 of solvent-extractable organic matter (SEOM) corresponding to 11.4% of the PM10 concentration and 38.6 μg m− 3 with 5.9 μg m− 3 SEOM corresponding to 15.2% for PM2.5. PM concentration and SEOM varied with the season and the particle size. The quantification of nitro-polycyclic aromatic hydrocarbons (nitro-PAH) was developed through the standards addition method under two schemes: reference standard with and without matrix, the former giving the best results. The recovery percentages varied with the extraction method within the 52 to 97% range depending on each nitro-PAH. The determination of the latter was effected with and without sample purification, also termed fractioning, giving similar results. 8 nitro-PAH were quantified, and their sum ranged from 111 to 819 pg m− 3 for PM10 and from 58 to 383 pg m− 3 for PM2.5, depending on the season. The greatest concentration was for 9-Nitroanthracene in PM10 and PM2.5, detected during the cold-dry season, with a median (10th-90th percentiles) concentration in 235 pg m− 3 (66-449 pg m− 3) for PM10 and 73 pg m− 3 (18-117 pg m− 3) for PM2.5. The correlation among mass concentrations of the nitro-PAH and criteria pollutants was statistically significant for some nitro-PAH with PM10, SEOM in PM10, SEOM in PM2.5, NOX, NO2 and CO, suggesting either sources, primary or secondary origin. The measured concentrations of nitro-PAH were higher than those reported in other countries, but lower than those from Chinese cities. Knowledge of nitro-PAH atmospheric concentrations can aid during the surveillance of diseases (cardiovascular and cancer risk) associated with these exposures.  相似文献   

4.
Three monthly 24-hour samples of airborne aerosols (PM10 and PM2.5) were collected at an urban and a rural site of the North central, semi-arid part of India during May 2006 to March 2008. Seven trace metals (Pb, Zn, Ni, Fe, Mn, Cr and Cu) were determined for both sizes. The annual mean concentration for PM10 was 154.2 µg/m3 and 148.4 µg/m3 at urban and rural sites whereas PM2.5 mean concentration was 104.9 µg/m3 and 91.1 µg/m3 at urban and rural sites, respectively. Concentrations of PM10 and PM2.5 have been compared with prescribed WHO standards and NAAQS given by CPCB India and were found to be higher. Weekday/weekend variations of PM10 and PM2.5 have been studied at both monitoring sites. Lower particulate pollutant levels were found during weekends, which suggested that anthropogenic activities are major contributor of higher ambient particulate concentration during weekdays. Significant seasonal variations of particulate pollutants were obtained using the daily average concentration of PM10 and PM2.5 during the study period. PM2.5/PM10 ratios at urban and rural sites were also determined during the study period, which also showed variation between the seasons. Three factors have been identified using Principal Component Analysis at the sampling sites comprising resuspension of road dust due to vehicular activities, solid waste incineration, and industrial emission at urban site whereas resuspension of soil dust due to vehicular emission, construction activities and wind blown dust carrying industrial emission, were common sources at rural site.  相似文献   

5.
Estimating personal exposure to air pollution is a crucial component in identifying high-risk populations and situations. It will enable policy makers to determine efficient control strategies. Cycling is again becoming a favorite mode of transport both in developing and in developed countries due to increasing traffic congestion and environmental concerns. In Europe, it is also seen as a healthy sports activity. However, due to high levels of hazardous pollutants in the present day road microenvironment the cyclist might be at a higher health risk due to higher breathing rate and proximity to the vehicular exhaust.In this paper we present estimates of the exposure of a cyclist to particles of various size fractions including ultrafine particles (UFP) in the town of Mol (Flanders, Belgium). The results indicate relatively higher UFP concentration exposure during morning office hours and moderate UFP levels during afternoon. The major sources of UFP and PM10 were identified, which are vehicular emission and construction activities, respectively. We also present a dust mapping technique which can be a useful tool for town planners and local policy makers.  相似文献   

6.
An air quality study was performed outside a cluster of schools in the East Harlem neighborhood of New York City. PM2.5 and black carbon concentrations were monitored using real-time equipment with a one-minute averaging interval. Monitoring was performed at 1:45-3:30 PM during school days over the period October 31-November 17, 2006. The designated time period was chosen to capture vehicle emissions during end-of-day dismissals from the schools. During the monitoring period, minute-by-minute volume counts of idling and passing school buses, diesel trucks, and automobiles were obtained. These data were transcribed into time series of number of diesel vehicles idling, number of gasoline automobiles idling, number of diesel vehicles passing, and number of automobiles passing along the block adjacent to the school cluster. Multivariate regression models of the log-transform of PM2.5 and black carbon (BC) concentrations in the East Harlem street canyon were developed using the observation data and data from the New York State Department of Environmental Conservation on meteorology and background PM2.5. Analysis of variance was used to test the contribution of each covariate to variability in the log-transformed concentrations as a means to judge the relative contribution of each covariate. The models demonstrated that variability in background PM2.5 contributes 80.9% of the variability in log[PM2.5] and 81.5% of the variability in log[BC]. Local traffic sources were demonstrated to contribute 5.8% of the variability in log[BC] and only 0.43% of the variability in log[PM2.5]. Diesel idling and passing were both significant contributors to variability in log[BC], while diesel passing was a significant contributor to log[PM2.5]. Automobile idling and passing did not contribute significant levels of variability to either concentration. The remainder of variability in each model was explained by temperature, along-canyon wind, and cross-canyon wind, which were all significant in the models.  相似文献   

7.

Introduction

Owing to their small size, fine particles, i.e., those having a diameter ≤ 2.5 μm (PM2.5), have a high alveolar penetration capacity, thereby triggering a local inflammatory process with circulatory repercussion. Despite being linked to respiratory and cardiovascular morbidities, there is limited evidence of an association between this type of particulate matter and short-term increases in mortality.

Objective

The aim of this study was to analyse and quantify the short-term impact of PM2.5 on daily mortality due to diseases of the circulatory system, registered in Madrid from 1 January 2003 to 31 December 2005.

Methods

An ecological longitudinal time-series study was conducted, with risks being quantified by means of Poisson regression models. As a dependent variable, we took daily mortality registered in Madrid from 1 January 2003 to 31 December 2005, attributed to all diseases of the circulatory system as classified under heads I00-I99 of the International Classification of Diseases-10th revision (ICD-10) and broken down as follows: I21, acute myocardial infarction (AMI); I20, I22-I25, other ischemic heart diseases; and I60-I69, cerebrovascular diseases. The independent variable was daily mean PM2.5 concentration. The other variables controlled for were: chemical pollution (PM10, O3, SO2, NO2 and NOx); acoustic and biotic pollution; influenza; minimum and maximum temperatures; seasonalities; trend; and autocorrelation of the series.

Results

A linear relationship was observed between PM2.5 levels and mortality due to diseases of the circulatory system. For every increase of 10 μg/m3 in daily mean PM2.5 concentration, the relative risks (RR) were as follows: for overall circulatory mortality, associations were established at lags 2 and 6, with RR of 1.022 (1.005-1.039) and 1.025 (1.007-1.043) respectively; and for AMI mortality, there was an association at lag 6, with an RR of 1.066 (1.032-1.100). The corresponding attributable risks percent (AR%) were 2.16%, 2.47% and 6.21% respectively. No statistically significant association was found with other ischemic heart diseases or with cerebrovascular diseases.

Conclusion

PM2.5 concentrations are an important risk factor for daily circulatory-cause mortality in Madrid. From a public health point of view, the planning and implementation of specific measures targeted at reducing these levels constitute a pressing need.  相似文献   

8.
Indoor particle number and PM2.5 concentrations were investigated in a radio station surrounded by busy roads. Two extensive field measurement campaigns were conducted to determine the critical parameters affecting indoor air quality. The results indicated that indoor particle number and PM2.5 concentrations were governed by outdoor air, and were significantly affected by the location of air intake and design of HVAC system. Prior to the upgrade of the HVAC system and relocation of the air intake, the indoor median particle number concentration was 7.4×103 particles/cm3 and the median PM2.5 concentration was 7 μg/m3. After the relocation of air intake and the redesign of the HVAC system, the indoor particle number concentration was between 2.3×103 and 3.4×103 particles/cm3, with a median value of 2.7×103 particles/cm3, and the indoor PM2.5 concentration was in the range of 3–5 μg/m3, with a median value of 4 μg/m3. By relocating the air intake of the HVAC, the outdoor particle number and PM2.5 concentrations near the air intake were reduced by 35% and 55%, respectively. In addition, with the relocation of air intake and the redesign of the HVAC system, the particle number penetration rate was reduced from 42% to 14%, and the overall filtration efficiency of the HVAC system (relocation of air intake, pre-filter, AHU and particle losses in the air duct) increased from 58% to 86%. For PM2.5, the penetration rate after the upgrade was approximately 18% and the overall filtration efficiency was 82%. This study demonstrates that by using a comprehensive approach, including the assessment of outdoor conditions and characterisation of ventilation and filtration parameters, satisfactory indoor air quality can be achieved, even for those indoor environments facing challenging outdoor air conditions.  相似文献   

9.
The aim of the present work is to study the occupants' exposure to fine particulate concentrations in ten nightclubs (NCs) in Athens, Greece. Measurements of PM1 and PM2.5 were made in the outdoor and indoor environment of each NC. The average indoor PM1 and PM2.5 concentrations were found to be 181.77 μg m 3 and 454.08 μg m 3 respectively, while the corresponding outdoor values were 11.04 μg m 3 and 32.19 μg m 3. Ventilation and resuspension rates were estimated through consecutive numerical experiments with an indoor air quality model and were found to be remarkably lower than the minimum values recommended by national standards. The relative effects of the ventilation and smoking on the occupants' exposures were examined using multiple regression techniques. It was found that given the low ventilation rates, the effect of smoking as well as the occupancy is of the highest importance. Numerical evaluations showed that if the ventilation rates were at the minimum values set by national standards, then the indoor exposures would be reduced at the 70% of the present exposure values.  相似文献   

10.
There is strong epidemiological evidence of association between PM10 (particulate matter with an aerodynamic diameter less than or equal to 10 μm) and adverse health outcomes including death and increased hospital admissions for cardiopulmonary conditions. Ambient PM10 surrogates such as diesel exhaust particles (DEP), a common component of UK PM10, have been shown to induce lung inflammation in both humans and rodents. To date, few studies have reported on the toxicological response of UK PM10 in experimental animals.This study examines the pulmonary toxicological responses in male Sprague Dawley rats following the intratracheal instillation of Cardiff urban PM10. A mild but significant change in lung permeability was observed in the lung post-instillation of a high (10 mg) dose of the whole PM10 as adjudged by increases in lung to body weight ratio and total acellular lavage protein. Such effects were less marked following instillation of a water-soluble fraction (80% of the total mass) but histological examination showed that lung capillaries were swollen in size with this treatment.In conclusion, conventional toxicological, histological and toxicogenomic studies have indicated that Cardiff PM10 exhibits low bioreactivity in the form of mild permeability changes. Differential gene expression was observed when the lung was treated with whole PM10, containing durable particles, in comparison with the water-soluble fraction of PM10 that was devoid of particles. Such changes were linked to different histopathological events within the lung.  相似文献   

11.
Atmospheric particulate matter (PM) fractions (PM(10) and PM(2.5)) were sampled concurrently between June 2004 and May 2005 at two sites (urban and suburban) in Izmir, Turkey. The elemental composition of PM (Al, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, V, and Zn) was determined using inductively coupled plasma-optical emission spectrometer. Elemental compositions of several PM sources were also characterized. Positive matrix factorization (PMF) and chemical mass balance modeling (CMB) were applied to determine the PM sources and their contributions to air concentrations. The major contributors to PM were fossil fuel burning, traffic emissions, mineral industries and marine salt according to the PMF results. However, undetermined parts were more than 40%. On the other hand, the contributions to PM could be determined completely by CMB, and the dominant contributor was traffic with >70% at the two sites. Fossil fuel burning, mineral industries, marine salt and natural gas-fired power plant were the minor contributors.  相似文献   

12.
PM2.5 chemical composition in Hong Kong: urban and regional variations   总被引:1,自引:0,他引:1  
Chemically speciated PM2.5 measurements were made at roadside, urban, and rural background sites in Hong Kong for 1 year during 2000/2001 to determine the spatial and temporal variations of PM2.5 mass and chemical composition in this highly populated region. Annual average PM2.5 concentrations at the urban and rural sites were 34.1 and 23.7 microg m(-3), respectively, approximately 50-100% higher than the United States' annual average National Ambient Air Quality Standard (NAAQS) of 15 microg m(-3). Daily PM2.5 concentrations exceeded the U.S. 24-h NAAQS of 65 microg m(-3) on 19 days, reaching 131+/-8 microg m(-3) at the roadside site on 02/28/2001. Carbonaceous aerosol is the largest contributor to PM2.5 mass (explaining 52-75% of PM2.5 mass at the two urban sites and 32% at the background site), followed by ammonium sulfate (ranging from 23% to 37% at the two urban sites and 51% at the background site). Ammonium sulfate and crustal concentrations showed more uniform spatial distributions, while the largest urban-rural contrasts found in carbonaceous aerosol (likely due to emissions from on-road gasoline and diesel vehicles). Marine influences accounted for 7% of the mass at the background site (more than twice as much as at the two urban sites). Ternary diagrams are utilized to illustrate the different spatial patterns.  相似文献   

13.
Exposure to traffic-related pollution during childhood has been associated with asthma exacerbation, and asthma incidence. The objective of the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS) is to determine if the development of allergic and respiratory disease is associated with exposure to diesel engine exhaust particles. A detailed receptor model analyses was undertaken by applying positive matrix factorization (PMF) and UNMIX receptor models to two PM2.5 data sets: one consisting of two carbon fractions and the other of eight temperature-resolved carbon fractions. Based on the source profiles resolved from the analyses, markers of traffic-related air pollution were estimated: the elemental carbon attributed to traffic (ECAT) and elemental carbon attributed to diesel vehicle emission (ECAD).Application of UNMIX to the two data sets generated four source factors: combustion related sulfate, traffic, metal processing and soil/crustal. The PMF application generated six source factors derived from analyzing two carbon fractions and seven factors from temperature-resolved eight carbon fractions. The source factors (with source contribution estimates by mass concentrations in parentheses) are: combustion sulfate (46.8%), vegetative burning (15.8%), secondary sulfate (12.9%), diesel vehicle emission (10.9%), metal processing (7.5%), gasoline vehicle emission (5.6%) and soil/crustal (0.7%). Diesel and gasoline vehicle emission sources were separated using eight temperature-resolved organic and elemental carbon fractions. Application of PMF to both datasets also differentiated the sulfate rich source from the vegetative burning source, which are combined in a single factor by UNMIX modeling. Calculated ECAT and ECAD values at different locations indicated that traffic source impacts depend on factors such as traffic volumes, meteorological parameters, and the mode of vehicle operation apart from the proximity of the sites to highways. The difference in ECAT and ECAD, however, was less than one standard deviation. Thus, a cost benefit consideration should be used when deciding on the benefits of an eight or two carbon approach.  相似文献   

14.
The aim of this study was to identify the relationship between the concentrations of PM2.5 (particulate matter less than 2.5 μm) and the temporal variation of the monitored gases at Sohar highway, Oman, from November 2014 to February 2015. The hourly concentrations of surface ozone (O3), nitric dioxide (NO2) and sulphur dioxide (SO2) were measured by an open-path differential optical absorption spectroscopy instrument installed across Sohar highway. Additionally, the same gases and the meteorological parameters were measured in the same location of the PM2.5 analyser. The findings of this study show that on the hourly time scale, PM2.5 and O3 were very weakly and negatively correlated. In contrast, on the daily time scale, PM2.5 and O3 were positively rather weakly correlated. Stronger correlation coefficient was found between 24 h averages of PM2.5 and daily maximum O3 concentrations. A policy implication of these findings could be that reducing the emissions of O3 precursors reduces the levels of PM2.5 as well.  相似文献   

15.
Particulate matter and gaseous pollutants in residences in Antwerp, Belgium   总被引:1,自引:0,他引:1  
This comprehensive study, a first in Flanders, Belgium, aimed at characterizing the residential indoor air quality of subgroups that took part in the European Community Respiratory Health Survey (ECRHS I—1991 and ECHRS II—1996) questionnaire-based asthma and related illnesses studies. This pilot study aimed at the evaluation of particulate matter and various inorganic gaseous compounds in residences in Antwerp. In addition personal exposure to the gaseous compounds of one individual per residence was assessed. The main objective was to obtain some base-line pollutant levels and compare these with studies performed in other cities, to estimate the indoor air quality in residences in Antwerp. Correlations between the various pollutant levels, indoor:outdoor ratios and the micro-environments of each residence were investigated. This paper presents results on indoor and ambient PM1, PM2.5 and PM10 mass concentrations, its elemental composition in terms of K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Pb, Al, Si, S and Cl and the water-soluble ionic concentrations in terms of SO42−, NO32−, Cl, NH4+ K+, Ca2+. In addition, indoor, ambient and personal exposure levels of the gases NO2, SO2, and O3 were determined. Elevated indoor:outdoor ratios were found for NO2 in residences containing gas stoves. In smoker's houses increased PM concentrations of 58 and 43% were found for the fine and coarse fractions respectively. Contrary to the fact that all I/O ratios of the registered elements in each individual house were significantly correlated to each other, no correlation could be established between the I/O ratios of the different houses, thus indicating a unique micro-environment for each residence. Linear relationships between the particulate matter elemental composition, SO2 and O3 levels indoors and outdoors could be established. No linear relationships between indoor and outdoor NO2 and particulate mass concentrations were found.  相似文献   

16.
There are several models that can be used to evaluate roadside air quality. The comparison of the operational performance of different models pertinent to local conditions is desirable so that the model that performs best can be identified. Three air quality models, namely the 'modified General Finite Line Source Model' (M-GFLSM) of particulates, the 'California Line Source' (CALINE3) model, and the 'California Line Source for Queuing & Hot Spot Calculations' (CAL3QHC) model have been identified for evaluating the air quality at one of the busiest traffic intersections in the city of Guwahati. These models have been evaluated statistically with the vehicle-derived airborne particulate mass emissions in two sizes, i.e. PM10 and PM2.5, the prevailing meteorology and the temporal distribution of the measured daily average PM10 and PM2.5 concentrations in wintertime. The study has shown that the CAL3QHC model would make better predictions compared to other models for varied meteorology and traffic conditions. The detailed study reveals that the agreements between the measured and the modeled PM10 and PM2.5 concentrations have been reasonably good for CALINE3 and CAL3QHC models. Further detailed analysis shows that the CAL3QHC model performed well compared to the CALINE3. The monthly performance measures have also led to the similar results. These two models have also outperformed for a class of wind speed velocities except for low winds (<1 m s(-1)), for which, the M-GFLSM model has shown the tendency of better performance for PM10. Nevertheless, the CAL3QHC model has outperformed for both the particulate sizes and for all the wind classes, which therefore can be optional for air quality assessment at urban traffic intersections.  相似文献   

17.
The inorganic main elements, trace elements and PAHs were determined from selected PM1, PM2.5 and PM10 samples collected at the Nordic background station in Virolahti during different seasons and during the wildfire episodes in 2006. Submicron particles are those most harmful to human beings, as they are able to penetrate deep into the human respiratory system and may cause severe health effects. About 70-80%, of the toxic trace elements, like lead, cadmium, arsenic and nickel, as well as PAH compounds, were found in particles smaller than 1 µm. Furthermore, the main part of the copper, zinc, and vanadium was associated with submicron particles. In practice, all the PAHs found in PM10 were actually in PM2.5. For PAHs and trace elements, it is more beneficial to analyse the PM2.5 or even the PM1 fraction instead of PM10, because exclusion of the large particles reduces the need for sample cleaning to minimize the matrix effects during the analysis. During the wildfire episodes, the concentrations of particles smaller than 2.5 µm, as well as those of submicron particles, increased, and also the ratio PM1/PM10 increased to about 50%. On the fire days, the mean potassium concentration was higher in all particle fractions, but ammonium and nitrate concentrations rose only in particles smaller than 1.0 µm. PAH concentrations rose even to the same level as in winter.  相似文献   

18.

Background

Saharan dust outbreaks are a common phenomenon in the Madrid atmosphere. The current Directive 2008/50 CE governing air quality in European cities, draws no distinction between which particulate matter (PM10, PM2.5 or PM10-2.5) would be the best indicator on days with/without Saharan dust intrusions. This study sought to identify the role played by Saharan dust in the relationship between particulate matter (PM10, PM2.5 and PM10-2.5) concentrations and daily mortality among the elderly in the city of Madrid.

Methods

We conducted an ecological longitudinal time-series study on daily mortality among the over-75 age group, from 2003 to 2005. Poisson regression models were constructed for days with and without Saharan dust intrusions. The following causes of daily mortality were analysed: total organic causes except accidents (International Classification of Diseases-10th revision (ICD-10): A00-R99); circulatory causes (ICD-10: I00-I99); and respiratory causes (ICD-10: J00-J99). Daily mean PM10, PM2.5 and PM10-2.5 levels were used as independent variables. Control variables were: other ambient pollutants (chemical, biotic and acoustic); trend; seasonalities; influenza epidemics; and autocorrelations between mortality series.

Results

While daily mean PM2.5 concentrations in Madrid displayed a significant statistical association with daily mortality for all the above causes on days without Saharan dust intrusions, this association was not in evidence for PM10 or PM10-2.5 in the multivariate models. The relative risks (RRs) obtained for an increase of 10 μg/m3 in PM2.5 concentrations were: 1.023 (1.010-1.036) for total organic causes; 1.033 (1.031-1.035) for circulatory causes; and 1.032 (1.004-1.059) for respiratory causes. On Saharan dust days, a significant statistical association was detected between PM10 (though not PM2.5 or PM10-2.5) and mortality for all 3 causes analysed, with RRs statistically similar to those reported for PM2.5.

Conclusions

The best air quality indicators for evaluating the short-term health effects of particulate matter in Madrid are therefore PM10 concentrations on days with, and PM2.5 concentrations on days without Saharan dust outbreaks. This fact should be taken into account in a European Directive regulating ambient air quality in almost all countries in the Mediterranean area.  相似文献   

19.
A longitudinal study on spatial and temporal behavior of particles less than 2.5 μm (PM2.5), solvent extracted organic matter (SEOM), polycyclic aromatic hydrocarbons (PAH), n-alkanes and nitro-PAH was carried out for a full year in 2006, at five sites simultaneously around the Metropolitan Zone of Mexico Valley (MZMV). There is rather uniform distribution of PM2.5 and SEOM in the MZMV regarding gravimetric mass concentration, while some specific organic chemical components showed mass heterogeneity. The highest mass concentrations of target compounds occurred in the dry seasons with respect to the rainy season. Bonfires and fireworks are probably responsible for extreme values of PM2.5, SEOM and PAH (≥ 228 g mol− 1). Benzo[ghi]perylene was the most abundant PAH, with C24-C26 the most abundant n-alkanes and 2-nitrofluoranthene and 9-nitroanthracene the most abundant nitro-PAH. The northeast zone was the area with the greatest presence of sources of incomplete diesel combustion, while the central for gasoline combustion. In the southwest, the biogenic sources were more abundant over the anthropogenic sources. This was opposite to the other sites. Factor analysis allowed us to relate different compounds to emitting sources. Three main factors were associated with combustion, pyrolysis and biogenic primary sources while the other factors were associated with secondary organic aerosol formation and industry. Correlation analyses indicated that SEOM originates from different primary emission sources or is formed by different processes than the other variables, except in southwest. Associations among variables suggest that PM2.5 in the northwest and in the southeast originated mainly from primary emissions or consisted of primary organic compounds. PM2.5 in the northeast, central and southwest contains a greater proportion of secondary organic compounds, with the less oxidized organic aerosols in the northeast and the most aged organic aerosol in the southwest. This follows the trends in the prevailing wind directions in MZMV during 2006.  相似文献   

20.
To assess the atmospheric environmental impacts of anthropogenic reactive nitrogen in the fast-developing Eastern China region, we measured atmospheric concentrations of nitrogen dioxide (NO2) and ammonia (NH3) as well as the wet deposition of inorganic nitrogen (NO3 and NH4+) and dissolved organic nitrogen (DON) levels in a typical agricultural catchment in Jiangsu Province, China, from October 2007 to September 2008. The annual average gaseous concentrations of NO2 and NH3 were 42.2 μg m3 and 4.5 μg m3 (0 °C, 760 mm Hg), respectively, whereas those of NO3, NH4+, and DON in the rainwater within the study catchment were 1.3, 1.3, and 0.5 mg N L1, respectively. No clear difference in gaseous NO2 concentrations and nitrogen concentrations in collected rainwater was found between the crop field and residential sites, but the average NH3 concentration of 5.4 μg m3 in residential sites was significantly higher than that in field sites (4.1 μg m3). Total depositions were 40 kg N ha1 yr1 for crop field sites and 30 kg N ha1 yr1 for residential sites, in which dry depositions (NO2 and NH3) were 7.6 kg N ha1 yr1 for crop field sites and 1.9 kg N ha1 yr1 for residential sites. The DON in the rainwater accounted for 16% of the total wet nitrogen deposition. Oxidized N (NO3 in the precipitation and gaseous NO2) was the dominant form of nitrogen deposition in the studied region, indicating that reactive forms of nitrogen created from urban areas contribute greatly to N deposition in the rural area evaluated in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号