首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of dimethyl carbonate (DMC) on the gaseous and particulate emissions of a diesel engine was investigated using Euro V diesel fuel blended with different proportions of DMC. Combustion analysis shows that, with the blended fuel, the ignition delay and the heat release rate in the premixed combustion phase increase, while the total combustion duration and the fuel consumed in the diffusion combustion phase decrease. Compared with diesel fuel, with an increase of DMC in the blended fuel, the brake thermal efficiency is slightly improved but the brake specific fuel consumption increases. On the emission side, CO increases significantly at low engine load but decreases at high engine load while HC decreases slightly. NOx reduces slightly but the reduction is not statistically significant, while NO2 increases slightly. Particulate mass and number concentrations decrease upon using the blended fuel while the geometric mean diameter of the particles shifts towards smaller size. Overall speaking, diesel-DMC blends lead to significant improvement in particulate emissions while the impact on CO, HC and NOx emissions is small.  相似文献   

2.
Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultra-low sulfur diesel, bi oesel and their blends, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev/min. Blended fuels containing 19.6%, 39.4%, 59.4% and 79.6% by volume of biodiesel, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. Biodiesel used in this study was converted from waste cooking oil.The following results are obtained with an increase of biodiesel in the fuel. The brake specific fuel consumption and the brake thermal efficiency increase. The HC and CO emissions decrease while NOx and NO2 emissions increase. The smoke opacity and particulate mass concentrations reduce significantly at high engine load. In addition, for submicron particles, the geometry mean diameter of the particles becomes smaller while the total number concentration increases. For the unregulated gaseous emissions, generally, the emissions of formaldehyde, 1,3-butadiene, toluene, xylene decrease, however, acetaldehyde and benzene emissions increase.The results indicate that the combination of ultra-low sulfur diesel and biodiesel from waste cooking oil gives similar results to those in the literature using higher sulfur diesel fuels and biodiesel from other sources.  相似文献   

3.
This paper presents the regulated emissions profile of a Euro 4 compliant common rail passenger car, fuelled with low concentration biodiesel blends. Four biodiesels of different origin and quality blended with a typical automotive diesel fuel at proportions of 10, 20, and 30% v/v. Emission and fuel consumption measurements were conducted on a chassis dynamometer with constant volume sampling (CVS) technique, over the New European Driving Cycle (NEDC) and the real traffic-based Artemis driving cycles. Limited effects were observed on CO2 emissions, while fuel consumption marginally increased with biodiesel. PM, HC and CO emissions improved with the addition of biodiesel, with some exceptions. Some increases with biodiesel were observed over the NEDC, as a consequence of biodiesel characteristics and engine conditions. NOx emissions were increased with the use of biodiesel blends and positively correlated with fuel unsaturation levels.  相似文献   

4.
This article is an effort to address the need for a non-cooking oil-based biodiesel. Here, the experimental work is done on a single cylinder, direct injection CI engine using cashew nut shell oil biodiesel blends under constant speed. The cashew nut shell liquid (CNSL) biodiesel is blended with the diesel fuel and used as biodiesel blend. Blends used for testing are B20, B40 and B60. The effect of the fuels on engine power, brake thermal efficiency (BTE) and exhaust gas temperature was determined by performance tests. The influences of blends on CO, CO2, HC and NOx emissions were investigated by emission tests. The BTE values of biodiesel are closer to diesel. Compared to diesel, all the biodiesel blends gave lesser unburnt hydrocarbon (HC), carbon monoxide (CO) and smoke emissions. Slightly higher NOx emissions were found in CNSL biodiesel blends, which is typical of the other biodiesels.  相似文献   

5.
As the decreasing availability of the fossil fuel is rising day by day, the search of alternate fuel that can be used as a substitute to the conventional fuels is rising rapidly. A new type of biofuel, chicha oil biodiesel, is introduced in this work for the purpose of fuelling diesel engine. Chicha oil was transesterified with methanol using potassium hydroxide as catalyst to obtain chicha oil methyl ester (COME). The calorific value of this biodiesel is lower, when compared to that of diesel. The COME and their blends of 20%, 40%, 60% and 80% with diesel were tested in a single cylinder, four stroke, direct injection diesel engine and the performance, combustion and emission results were compared with diesel. The test result indicates that there is a slight increase in brake thermal efficiency and decrease in brake-specific fuel consumption for all blended fuels when compared to that of diesel fuel. The use of biodiesel resulted in lower emissions of CO and HC and increased emissions of CO2 and NOx. The experimental results proved that the use of biodiesel (produced from chicha oil) in compression ignition engine is a viable alternative to diesel.  相似文献   

6.
Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NOx emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NOx emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NOx emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NOx emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine.  相似文献   

7.
In this study, the regulated and unregulated emissions profile and fuel consumption of an automotive diesel and biodiesel blends, prepared from two different biodiesels, were investigated. The biodiesels were a rapeseed methyl ester (RME) and a palm-based methyl ester (PME). The tests were performed on a chassis dynamometer with constant volume sampling (CVS) over the New European Driving Cycle (NEDC) and the non-legislated Athens Driving Cycle (ADC), using a Euro 2 compliant passenger vehicle. The objectives were to evaluate the impact of biodiesel chemical structure on the emissions, as well as the influence of the applied driving cycle on the formation of exhaust emissions and fuel consumption. The results showed that NOx emissions were influenced by certain biodiesel properties, such as those of cetane number and iodine number. NOx emissions followed a decreasing trend over both cycles, where the most beneficial reduction was obtained with the application of the more saturated biodiesel. PM emissions were decreased with the palm-based biodiesel blends over both cycles, with the exception of the 20% blend which was higher compared to diesel fuel. PME blends led to increases in PM emissions over the ADC. The majority of the biodiesel blends showed a tendency for lower CO and HC emissions. The differences in CO2 emissions were not statistically significant. Fuel consumption presented an increase with both biodiesels. Total PAH and nitro-PAH emission levels were decreased with the use of biodiesel independently of the source material. Lower molecular weight PAHs were predominant in both gaseous and particulate phases. Both biodiesels had a negative impact on certain carbonyl emissions. Formaldehyde and acetaldehyde were the dominant aldehydes emitted from both fuels.  相似文献   

8.
ABSTRACT

The use of lower alcohol (such as methanol and ethanol) blends in diesel engines shows problems like phase separation, miscibility, higher NOx emissions etc. The addition of higher alcohols with either diesel or biodiesel is relatively new and only a little information is available on the effects of higher alcohols. In this work, the engine performance and emissions characteristics were compared between the lower and higher alcohol blended with biodiesel. Conventional diesel and biodiesel are considered as the reference fuels. Three lower alcohols (methanol, ethanol and propanol) and three higher alcohols (butanol, pentanol and octanol) of each 50% by volume were mixed with biodiesel of 50% by volume. Experiments were conducted on a single cylinder compression ignition diesel engine by varying the load conditions at a constant speed. Engine performance and emissions of CO, CO2, NOx and HC were determined. The results are discussed.  相似文献   

9.
Biodiesel is considered to be an alternative energy source, which will help to decrease the effects of global greenhouse gases. The extensive use of fossil fuels has led to the depletion of petroleum resources. The gases that emerge out from the diesel engine cause a major impact on the ecological system. In this paper, black pepper oil along with nano-additives was blended with a diesel engine and its performance was analysed in direct injection diesel engine at a constant speed and at different loading conditions. At varying loading conditions, the brake thermal efficiency of biodiesel blends was found to be slightly higher than that of diesel. It is also seen that the unburnt hydrocarbons and carbon monoxide get reduced at different loads and at different blends. It was observed from the result that by using biodiesel emission of CO and HC and smoke decreased while NOx emission increased.  相似文献   

10.
This study investigates the biodiesel from Deccan hemp oil and its blends for the purpose of fuelling diesel engine. The performance and emission characteristics of Deccan hemp biodiesel are estimated and compared with diesel fuel. The experimental investigations are carried out with different blends of Deccan hemp biodiesel. Results show that brake thermal efficiency is improved significantly by 4.15% with 50 BDH when compared with diesel fuel. The Deccan hemp biodiesel reduces NOx, HC and CO emission along with a marginal increase in CO2 and smoke emissions with an increase in the biodiesel proportion in the diesel fuel. The improvement in heat release rates shows an increase in the combustion rate with different percentage blends of Deccan hemp biodiesel. From the engine test results, it has been established that 30–50 BDH of Deccan hemp biodiesel can be substituted for diesel.  相似文献   

11.
The current state of future energy and environmental crises has revitalised the need to find alternative sources of energy due to escalating oil prices and depleting oil reserves. To meet increasing energy requirements, there has been a growing interest in alternative fuels like biodiesel that can become a suitable diesel fuel substitute for compression ignition engine. Biodiesel offers a very promising alternative to diesel fuel, since they are renewable and have similar properties. Calophyllum inophyllum seed oil collected from different restaurants in the Nagapattinam region of South India was converted into methyl esters (biodiesel) by transesterification. Biodiesel produced from C. inophyllum oil was blended with diesel by different volume proportions (25%, 50%, and 75%). Biodiesel and its blends were tested on a direct injection (DI) diesel engine at a constant speed by varying loads from 0% to 100% in steps of 20% to analyse its performance, emission, and combustion characteristics. The results obtained were compared with that of diesel fuel. B25 (27.5%) showed better performance than diesel fuel (26.28%) at full load and B50 showed performances similar to diesel fuel. Smoke density of B25 was slightly (2.6%) higher than that of diesel at full load conditions. At full load, measured carbon monoxide emissions for B25 and B50 were 4% lower than that of diesel. Hydrocarbon emissions for B25 and B100 were 5.37% and 25.8% higher than that of diesel, respectively. Nitrogen oxides (NOx) emission was lower for all biodiesel blends. NOx emissions of B100 and B75 were lower than that of diesel by 22.16% and 13.29% at full load, respectively. Combustion profile was smoother, and no knocking problem was observed while operating with biodiesel blends. B75 produced peak cylinder pressure.  相似文献   

12.
ABSTRACT

This work investigates the effect of adding Cerium oxide nanoparticles at different proportions (30, 60 and 90?ppm) to Calophyllum inophyllum methyl ester and diesel blends (20% CI methyl ester and 80% diesel) in a four-stroke single-cylinder diesel engine. Addition of nanoparticles is a strategy to reduce emission and to improve the performance of the biodiesel. Modified fuels are introduced into the engine by admitting exhaust gas recirculation (EGR) at a rate of 10% and 20% so as to reduce nitrogen oxide (NOX) emissions from biodiesel and diesel blends. Results revealed a significant reduction in emissions (CO, NOX, HC and Smoke) at a 10% EGR rate. However, brake thermal efficiency is reduced with an increase in brake-specific fuel consumption at higher EGR rates. Hence, it is observed that 10% EGR rate is an effective method to control the emission of biodiesel and diesel blends without compromising much on engine efficiency.  相似文献   

13.
This research focuses on a comparative study of the physical and chemical properties of waste cooking oil (WCO) biodiesel with China stage IV diesel fuel. The estimate method of excess air ratio and the heating value ratio of an engine's cylinder mixture are proposed based on the differences of properties of two fuels. The bench tests of engine performance are carried out with an engine fuelled with two fuels separately. The estimated excess air ratio and the heating value ratio of an engine's cylinder mixture through the method are approximate to the experiment results. This comparison demonstrates that the estimate method can be applied to the performance analysis of an engine. Compared with China stage IV diesel, when a diesel engine is fuelled with WCO biodiesel, the torque and power decline from 1.9% to 13.8%; the brake-speci?c fuel consumption rises from 3.7% to 15.6%; CO, HC and PM emissions decrease significantly and NOX emissions increase slightly.  相似文献   

14.
The present paper investigates the performance and emission characteristics of a single-cylinder, four-stroke diesel engine fuelled with Pongamia methyl ester (PME) and n-butanol, at different loading conditions. Two blends of n-butanol–PME (10% and 20% n-butanol with PME on a volumetric basis) were prepared. The experimental results showed a significant improvement in the brake thermal efficiency of the engine with the blends and were found to increase with increasing percentage of n-butanol in the blends. The blended fuels also show lower emission such as carbon monoxide (CO), oxides of nitrogen (NOx) and smoke opacity. However, unburned hydrocarbon (HC) emission was found to be slightly increased. Thus, it is concluded that the biodiesel with 20% n-butanol blend showed better results with respect to efficiency and emissions point of view compared with biodiesel.  相似文献   

15.
ABSTRACT

Dimethyl carbonate (DMC), a cetane improver, is used as a fuel additive to investigate the exhaust emission in diesel engine. Neem oil biodiesel (B100), neem oil biodiesel + dimethyl carbonate (B100+DMC) and diesel were used as test fuels. DMC is added 0.5% by volume to biodiesel. This research work was executed in a four-stroke, single-cylinder diesel engine. Owing to the percentage of DMC in biodiesel, carbon monoxide (CO) and hydrocarbon (HC) emissions were dropped corresponding to diesel. A considerable amount of nitrogen oxide (NOx) is decreased when diesel is used, and by the addition of B100+DMC, NOx were slightly reduced compared to B100.  相似文献   

16.
ABSTRACT

The present investigation explores the effect of dairy scum oil methyl ester (DSOME) blends and ethanol additive on TV1 Kirloskar diesel engine performance, combustion and emission characteristics. From the experimental study, it is concluded that DSOME-B20 (20% dairy scum biodiesel?+?80% diesel) has shown appreciable performance and lower HC and CO emissions among all other blends. Hence DSOME-B20 is optimised as best fuel blend and it is carried for further investigations to study the effect of bio-ethanol additive on diesel engine performance. From the study it apparent that diesel engine operated with ethanol additive and 20% dairy scum biodiesel blended fuels shown the satisfactorily improved emission characteristics when compared to petroleum diesel fuel operation. Finally, from the experimental investigation, it concludes that addition of ethanol shown the slightly higher HC, CO emission and improved BTE, BSFC, NOx and CO2 than sole B20 biodiesel blend. Among all three (3%, 6% and 9%) ethanol additive ratios, E6% (6%-ethanol with B20) ethanol additive exhibits slightly better BTE, BSFC, cylinder pressure and heat release rate hence 6% ethanol additive with B20 biodiesel blend would furnish beneficial effects in the diesel engine.  相似文献   

17.
The role of nanoparticles and nanofluid additives for biodiesel has gained consistent position in the current trend as they contribute to increase the performance of the engine with lower emission. In addition, additives also help to increase the engine reliability and lifespan. In this work, the effects of canola biodiesel blends of 20% proportions with diesel were investigated at 100% of engine load. The fuel is tested in a multi-cylinder water-cooled direct ignition (DI) engine. There are numerous notable works on nanofluid; however, the addition of TiO2 nanoparticle as additive to produce canola biodiesel fuel is very limited. With the addition of the TiO2 nanoparticle on Canola biodiesel blend in the DI engine, the exhaust property of gases such as CO, HC and NOX is reduced. Furthermore, the combustion characteristics of the engine are improved. The canola biodiesel blends also resulted in lower NOx emission as well as low smoke.  相似文献   

18.
A study of engine performance characteristics and both of regulated (CO, HC, NOx, and smoke) and unregulated (ultrafine particle number, mass concentrations and size distribution) emissions for a turbocharged diesel engine fueled with conventional diesel, gas-to-liquid (GTL) and dimethyl ether (DME) fuels respectively at different engine loads and speeds have been carried out. The results indicated that fuel components significantly affected the engine performance and regulated/unregulated emissions. GTL exhibited almost the same power and torque output as diesel, while improved fuel economy. GTL significantly reduced regulated emissions with average reductions of 21.2% in CO, 15.7% in HC, 15.6% in NOx and 22.1% in smoke in comparison to diesel, as well as average reductions in unregulated emissions of total ultrafine particle number (Ntot) and mass (Mtot) emissions by 85.3% and 43.9%. DME can significantly increase torque and power, compared with the original diesel engine, as well as significantly reduced regulated emissions of 40.1% in HC, 48.2% in NOx and smoke free throughout all the engine conditions. However, Ntot for DME is close to that for diesel. The reason is that the accumulation mode particle number emissions for DME are very low due to the characteristics of oxygen content and no C-C bond, which promotes the processes of nucleation and condensation of the semi-volatile compounds in the exhaust gas, as a result, a lot of nucleation mode particles produce.  相似文献   

19.
This paper aims to study the diesel engine performance and combustion characteristics fuelled with Banalities aegyptiaca oil methyl ester, palm oil methyl ester, sesame methyl ester oil, rapeseed methyl ester oil, soybean oil methyl ester and diesel fuel. In this present work, only 20% of each biodiesel blends was tested in diesel engine; stated that the possible use of biodiesel of up to 20% in a diesel engine without modification in literature. A single-cylinder, auxiliary water-cooled and computer-based variable compression ratio diesel engine was used to evaluate their performance at constant speed and at measured load conditions. The performance and combustion tests are conducted using each of the above test fuels, at a constant speed of 5000?rpm. Thus, the varying physical and chemical properties of test fuels against pure diesel are optimised for better engine performance.

Abbreviations: BP: brake power; BSFC: brake-specific fuel consumption; BTE: brake thermal efficiency; CO: carbon monoxide; CP: cylinder pressure; DP: diesel pressure; EGT: exhaust gas temperature; HC: hydrocarbon; HRR: heat release rate; NO x : nitric oxides; PM: particulate matter; TDC: top dead centre; VCR: variable compression ratio  相似文献   


20.
In the present investigation, the effect of thermal barrier coated piston on the performance and emission characteristics of mahua-biodiesel-fuelled diesel engine was studied and compared with those of neat diesel fuel. The piston, cylinder walls and the valves of the engine were coated with 0.25?mm thickness of Al2O3 material without affecting the compression ratio of the engine. Experiments were conducted using diesel and biodiesel blend (B20) in the engine with and without coating. The results revealed that specific fuel consumption was decreased by 8.5% and the brake thermal efficiency was increased by 6.2% for biodiesel blend with coated engine compared with the base engine with neat diesel fuel. The exhaust emissions CO, NOx and HC emissions were also decreased for biodiesel blend with coated engine compared with base engine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号