首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Atmospheric concentrations and gas-particle partition coefficients were determined for polycyclic aromatic hydrocarbons (PAHs) in the atmosphere of Zonguldak, Turkey between May 2007 and April 2008. Total concentrations of PAHs ranged from 0.52 ng m− 3 to 636 ng m− 3 in the particle phase and from 5.60 ng m− 3 to 725 ng m− 3 in the gas phase. The annual mean concentrations of PAHs in the particle and gas phase were found to be 114 ng m− 3 and 184 ng m− 3, respectively. Significant seasonal variations of particle and gas phase PAH concentrations were observed with higher levels during cold period. The distribution of PAHs between the particle and gas phase was investigated and it was found that three ring PAHs were associated primarily with the gas phase, four ring PAHs were distributed almost equally between the two phases and five and six ring PAHs were mainly associated with the particle phase. Gas-particle partition coefficients (Kp) of PAHs have been calculated and correlated with their subcooled liquid vapor pressures (PLº). The slopes (mr) varied from − 0.63 to − 0.23 were far from the theoretical value (−1) due to the short distance between the sampling point and the emission sources. The relationships between temperature and gas phase partial pressures of PAHs were examined using the Clausius-Clapeyron equation and the obtained positive slopes indicated that PAH concentrations increased with decreasing air temperature as a result of high dominance of local emissions.  相似文献   

2.
Concentrations of total gaseous mercury (TGM) were measured continuously at four urban residential locations (G (Guro-gu); N (Nowon-gu); S (Songpa-gu); and Y (Yongsan-gu)) in Seoul, Korea from 2004 to 2009. The mean concentrations of Hg at these sites were found on the order of N (3.98 ± 1.68 ng m− 3), S (3.87 ± 1.56 ng m− 3), G (3.80 ± 1.60 ng m− 3), and Y (3.36 ± 1.55 ng m− 3). Evidence indicates that the spatial distribution of Hg should be affected by the combined effects of both local anthropogenic (incineration facilities and thermal power plants) and natural (soil) emission sources in association with the meteorological parameters. Inspection of the Hg temporal patterns indicates the co-existence of contrasting seasonal patterns between the central site Y (winter dominance) and all other outbound sites near city borders (summer dominance). The long-term trend of Hg, if examined by combining our previous studies and the present one, shows that Hg levels in this urban area declined gradually across decadal periods despite slight variabilities in spatial scale: (1) above 10 ng m− 3 in the late 1980s, (2) ~ 5 ng m− 3 in the late 1990s, and (3) ~ 3 ng m− 3 toward the late 2000s. The results of the principal component analysis along with observed differences in seasonal patterns (between study sites) suggest that Hg distributions between different urban sites are greatly distinguishable with strong source signatures at each individual site.  相似文献   

3.
Within this study, concentration levels and distribution of the organophosphates tris(2-chloroethyl) phosphate (TCEP), tris(2-chloro-1-methylethyl) phosphate (TCPP), tris(2-butoxyethyl) phosphate (TBEP), tri-iso-butyl phosphate (TiBP), and tri-n-butyl phosphate (TnBP) were investigated at nine lentic surface waters under different anthropogenic impact between June 2007 and October 2009. Furthermore, the possibility of in-lake photochemical degradation of the analytes was studied in laboratory experiments using spiked ultrapure water and lake water samples incubated in Teflon bottles (which transmit sunlight). TBEP, TiBP, and TnBP were photochemically degraded in spiked lake water samples upon exposure to sunlight. Organophosphate concentrations in the more remote lakes were often below or close to the limits of quantification (LOQ). TCPP was the substance with the highest median concentration in rural volcanic lakes (7-18 ng L−1) indicating an atmospheric transport of the compound. At urban lakes their median concentrations were in the range of 23-61 ng L−1 (TCEP), 85-126 ng L−1 (TCPP), <LOQ-53 ng L−1 (TBEP), 8-10 ng L−1 (TiBP), and 17-32 ng L−1 (TnBP). High variability but no significant seasonal trends were observed for all five organophosphates in urban lake water samples.  相似文献   

4.
Despite the toxicity and widespread use of manganese (Mn) and lead (Pb) as additives to motor fuels and for other purposes, information regarding human exposure in Africa is very limited. This study investigates the environmental exposures of Mn and Pb in Durban, South Africa, a region that has utilized both metals in gasoline. Airborne metals were sampled as PM2.5 and PM10 at three sites, and blood samples were obtained from a population-based sample of 408 school children attending seven schools. In PM2.5, Mn and Pb concentrations averaged 17 ± 27 ng m− 3 and 77 ± 91 ng m− 3, respectively; Mn concentrations in PM10 were higher (49 ± 44 ng m− 3). In blood, Mn concentrations averaged 10.1 ± 3.4 μg L− 1 and 8% of children exceeded 15 μg L− 1, the normal range. Mn concentrations fit a lognormal distribution. Heavier and Indian children had elevated levels. Pb in blood averaged 5.3 ± 2.1 μg dL− 1, and 3.4% of children exceeded 10 μg dL− 1, the guideline level. Pb levels were best fit by a mixed (extreme value) distribution, and boys and children living in industrialized areas of Durban had elevated levels. Although airborne Mn and Pb concentrations were correlated, blood levels were not. A trend analysis shows dramatic decreases of Pb levels in air and children's blood in South Africa, although a sizable fraction of children still exceeds guideline levels. The study's findings suggest that while vehicle exhaust may contribute to exposures of both metals, other sources currently dominate Pb exposures.  相似文献   

5.
Daily samples of fine aerosol particles (i.e., PM1, aerosol particles with an aerodynamic diameter less than 1.0 μm) were collected in Tito Scalo — Southern Italy — from April 2006 to March 2007. Measurements were performed by means of a low-volume gravimetric sampler, and each PM1 sample was analyzed by means of Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Atomic Absorption Spectrometry (GFAAS and FAAS) techniques in order to determine its content in fourteen trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Ti and Zn). During the period examined, PM1 daily concentrations ranged between 0.3 µg m− 3 and 55 µg m− 3 with a mean value of 8 µg m-3, a standard deviation of 7 µg m− 3 and a median value of 6 µg m− 3. As far as PM1 chemical composition is concerned, the mean values of the trace element concentrations decreased in the following order: Ca > Fe > Al > Na > K > Cr > Mg > Pb > Ni ≈ Ti ≈ Zn > Cd ≈ Cu > Mn. Principal Component Analysis (PCA) allowed the identification of three probable PM1 sources: industrial emissions, traffic and re-suspension of soil dust. Moreover, the results of a procedure applied to study the potential long-range transport contribution to PM1 chemical composition, showed that trace element concentrations do not seem to be affected by air mass origin and path. This was probably due to the strong impact of the local emission sources and the lack of the concentration measurements of some important elements and compounds that could better reveal the long-range transport influence on PM1 measurements at ground level.  相似文献   

6.
Aerosol mass (PM10 and PM2.5) and detailed elemental composition were measured in monthly composites during the calendar year of 2007 at a site in Lahore, Pakistan. Elemental analysis revealed extremely high concentrations of Pb (4.4 μg m− 3), Zn (12 μg m− 3), Cd (0.077 μg m− 3), and several other toxic metals. A significant fraction of the concentration of Pb (84%), Zn (98%), and Cd (90%) was contained in the fine particulate fraction (PM2.5 and smaller); in addition, Zn and Cd were largely (≥ 60%) water soluble. The 2007 annual average PM10 mass concentration was 340 μg m− 3, which is well above the WHO guideline of 20 μg m− 3. Dust sources were found to contribute on average (maximum) 41% (70%) of PM10 mass and 14% (29%) of PM2.5 mass on a monthly basis. Seasonally, concentrations were found to be lowest during the monsoon season (July-September). Principle component analysis identified seven factors, which combined explained 91% of the variance of the measured components of PM10. These factors included three industrial sources, re-suspended soil, mobile sources, and two regional secondary aerosol sources likely from coal and/or biomass burning. The majority of the Pb was found to be associated with one industrial source, along with a number of other toxic metals including As and Cr. Cadmium, another toxic metal, was found at concentrations 16 times higher than the maximum exposure level recommended by the World Health Organization, and was concentrated in one industrial source that was also associated with Zn. These results highlight the importance of focusing control strategies not only on reducing PM mass concentration, but also on the reduction of toxic components of the PM as well, to most effectively protect human health and the environment.  相似文献   

7.
In this paper, the chemical characterization of PM10 and PM2.5 mass concentrations emitted by heterogeneous traffic in Chennai city during monsoon, winter and summer seasons were analysed. The 24-h averages of PM10 and PM2.5 mass concentrations, showed higher concentrations during the winter season (PM10 = 98 μg/m3; PM2.5 = 74 μg/m3) followed by the monsoon (PM10 = 87 μg/m3; PM2.5 = 56 μg/m3) and summer (PM10 = 77 μg/m3; PM2.5 = 67 μg/m3) seasons. The assessment of 24-h average PM10 and PM2.5 concentrations was indicated as violation of the world health organization (WHO standard for PM10 = 50 μg/m3 and PM2.5 = 25 μg/m3) and Indian national ambient air quality standards (NAAQS for PM10 = 100 μg/m3 and PM2.5 = 60 μg/m3).The chemicals characterization of PM10 and PM2.5 samples (22 samples) for each season were made for water soluble ions using Ion Chromatography (IC) and trace metals by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) instrument. Results showed the dominance of crustal elements (Ca, Mg, Al, Fe and K), followed by marine aerosols (Na and K) and trace elements (Zn, Ba, Be, Ca, Cd, Co, Cr, Cu, Mn, Ni, Pb, Se, Sr and Te) emitted from road traffic in both PM10 and PM2.5 mass. The ionic species concentration in PM10 and PM2.5 mass consists of 47-65% of anions and 35-53% of cations with dominance of SO42− ions. Comparison of the metallic and ionic species in PM10 and PM2.5 mass indicated the contributions from sea and crustal soil emissions to the coarse particles and traffic emissions to fine particles.  相似文献   

8.
Polar organic compounds and elements were quantified in PM10 aerosols collected in urban and rural areas of Baoji, an inland city of China, during winter and spring 2008. Concentrations of biomass burning markers and high molecular weight n-alkanoic acids (HMW, > C22:0) were heavily increased in winter. In contrast, sugars presented in higher levels in the spring, among which sucrose was the most abundant with an average of 219 ng m−3 in winter and 473 ng m−3 in spring respectively. This suggests enhanced biotic activity in the warm season, whereas no obvious trend was observed for sugar alcohols, concentrations of the three sugar alcohols in spring were only 0.94-2.3 times as those in winter, indicating a second pathway of their formation other than fungal spores in cold season. Major crustal elements (i.e., Fe, K, Mn and Ti) in PM10 aerosols were also observed in larger concentrations in spring samples than those in winter due to an enhancement of coarse particles from soil minerals. By using principal component analysis (PCA) and positive matrix factorization (PMF), sources and their contributions to the PM components were also investigated in this study. Four factors were extracted with both models, and the sources represented by different factors were based on the highest loaded marker species as follows: factor 1, soil and road dust (Fe, Sr and Ti); factor 2, biomass burning (levoglucosan, galactosan and syringic acid); factor 3, microbial emissions (fructose and sucrose); and factor 4, fossil fuel combustion and fungal spores influence (Pb, Zn, arabitol and mannitol). The high correlation between PM10 and factor 1 suggested that PM10 pollution in Baoji was dominated by soil and dust re-suspension.  相似文献   

9.
Concentrations of the isomers of the organochlorine pesticide hexachlorocyclohexane (HCH) were determined in 252 surface soil samples collected within a sampling network covering agricultural areas in Galicia (NW Spain). The concentration of total HCH (sum of α + β + γ + δ) ranged between 4 and 2305 ng g¹ (dry weight), with the α-HCH and γ-HCH isomers predominating (< 1-1404 ng g¹ and < 1-569 ng g¹, respectively). The distribution of the pesticide residues was very heterogeneous, with the largest concentrations present in one of the studied areas (the province of A Coruña). The distribution of HCH was not found to be related to any soil property (organic matter, pH, clays, and metals). Multivariate statistical analysis of the data revealed that three populations of samples with a defined composition of HCH, can be related to the source of HCH: technical HCH (α/γ > 3), lindane (99% γ-HCH), or both. The existence of a third population consisting almost exclusively of α-HCH suggests that background contamination of anthropogenic origin dates from several decades ago. The detailed analysis of these populations enabled the possible temporal scale of the application of these pesticides to be deduced.  相似文献   

10.
In this study, we measured polycyclic aromatic hydrocarbons (PAHs) in aerosols in Xi'an, China from 2005 to 2007, by using a modified Soxhlet extraction followed by a clean-up procedure using automated column chromatography followed by HPLC/fluorescence detection. The sources of PAHs were apportioned by using the positive matrix factorization (PMF) method. The PM10 concentration in winter (161.1 ± 66.4 μg m− 3, n = 242) was 1.5 times higher than that in summer (110.9 ± 34.7 μg m− 3, n = 248). ΣPAH concentrations, which are the sum of the concentrations of all detected PAHs, in winter (344.2 ± 149.7 ng m− 3, n = 45) was 2.5 times higher than that in summer (136.7 ± 56.7 ng m− 3, n = 24) in this study. These strong seasonal variations in atmospheric PAH concentration are possibly due to coal combustion for residential heating. According to the source apportionment with PMF method in this study, the major sources of PAHs in Xi'an are categorized as (1) mobile sources such as vehicle exhaust that constantly contribute to PAH pollution, and (2) stationary sources such as coal combustion that have a large contribution to PAH pollution in winter.  相似文献   

11.
With the purpose of knowing seasonal variations of Cd, Cr, Hg and Pb in a river basin with past and present mining activities, elemental concentrations were measured in six fish species and four crustacean species in Baluarte River, from some of the mining sites to the mouth of the river in the Pacific Ocean between May 2005 and March 2006. In fish, highest levels of Cd (0.06 μg g− 1 dry weight) and Cr (0.01 μg g− 1) were detected during the dry season in Gobiesox fluviatilis and Agonostomus monticola, respectively; the highest levels of Hg (0.56 μg g− 1) were detected during the dry season in Guavina guavina and Mugil curema. In relation to Pb, the highest level (1.65 μg g− 1) was detected in A. monticola during the dry season. In crustaceans, highest levels of Cd (0.05 μg g− 1) occurred in Macrobrachium occidentale during both seasons; highest concentration of Cr (0.09 μg g− 1) was also detected in M. occidentale during the dry season. With respect to Hg, highest level (0.20 μg g− 1) was detected during the rainy season in Macrobrachium americanum; for Pb, the highest concentration (2.4 μg g− 1) corresponded to Macrobrachium digueti collected in the dry season. Considering average concentrations of trace metals in surficial sediments from all sites, Cd (p < 0.025), Cr (p < 0.10) and Hg (p < 0.15) were significantly higher during the rainy season. Biota sediment accumulation factors above unity were detected mostly in the case of Hg in fish during both seasons. On the basis of the metal levels in fish and crustacean and the provisional tolerable weekly intake of studied elements, people can eat up to 13.99, 0.79 and 2.34 kg of fish in relation to Cd, Hg and Pb, respectively; regarding crustaceans, maximum amounts were 11.33, 2.49 and 2.68 kg of prawns relative to levels of Cd, Hg and Pb, respectively.  相似文献   

12.
Mercury (Hg) may be naturally associated with the rock units hosting precious and base metal deposits. Active gold mines are known to have point source releases of Hg associated with ore processing facilities. The nonpoint source release of Hg to the air from the large area (hundreds to thousands of hectares) of disturbed and processed material at industrial open pit gold mines has not been quantified. This paper describes the field data collected as part of a project focused on estimating nonpoint source emissions of Hg from two active mines in Nevada, USA. In situ Hg flux data were collected on diel and seasonal time steps using a dynamic flux chamber from representative mine surfaces. Hg fluxes ranged from < 1500 ng m−2 day−1 for waste rock piles (0.6-3.5 μg g−1) to 684,000 ng m−2 day−1 for tailings (2.8-58 μg g−1). Releases were positively correlated with material Hg concentrations, surface grain size, and moisture content. Highest Hg releases occurred from materials under active cyanide leaching and from tailings impoundments containing processed high-grade ore. Data collected indicate that as mine sites are reclaimed and material disturbance ceases, emissions will decline. Additionally local cycling of atmospheric Hg (deposition and re-emission) was found to occur.  相似文献   

13.
East Asia is the largest source region of global anthropogenic mercury emissions, and contributes to atmospheric mercury concentration and deposition in other regions. Similarly, mercury from the global pool also plays a role in the chemical transport of mercury in East Asia. Annual simulations of atmospheric mercury in East Asia were performed using the STEM-Hg modeling system to study the mass budgets of mercury in the region. The model results showed strong seasonal variation in mercury concentration and deposition, with signals from large point sources. The annual mean concentrations for gaseous elemental mercury, reactive gaseous mercury and particulate mercury in central China and eastern coastal areas were 1.8 ng m− 3, 100 pg m− 3 and 150 pg m− 3, respectively. Boundary conditions had a strong influence on the simulated mercury concentration and deposition, contributing to 80% of the concentration and 70% of the deposition predicted by the model. The rest was caused by the regional emissions before they were transported out of the model domain. Using different oxidation rates reported for the Hg0-O3 reaction (i.e., by Hall, 1995 vs. by Pal and Ariya, 2004) led to a 9% difference in the predicted mean concentration and a 40% difference in the predicted mean deposition. The estimated annual dry and wet deposition for East Asia in 2001 was in the range of 590-735 Mg and 482-696 Mg, respectively. The mercury mass outflow caused by the emissions in the domain was estimated to be 681-714 Mg yr− 1. This constituted 70% of the total mercury emission in the domain. The greatest outflow occurred in spring and early summer.  相似文献   

14.
The role of atmospheric urea on the biogeochemical cycle of Water Soluble Organic Nitrogen (WSON) in the Eastern Mediterranean was assessed by collecting and analyzing wet and dry deposition samples and size segregated aerosols during a one year period (2006). In rain water volume weighted mean (VWM) concentration of urea was found equal to 5.5 μM. In atmospheric particles the average concentration of urea in coarse and fine mode was 0.9 ± 1.9 nmol N m− 3 (median 0.0 nmol N m− 3) and 2.2 ± 3.0 nmol N m− 3 (median 1.1 nmol N m− 3), respectively. The percentage contribution of urea to WSON fraction was 0% and 20% in coarse and fine particles respectively. On an annual basis 0.81 mmol m− 2 and 1.78 mmol m− 2 of urea were deposited via wet and dry deposition, contributing to WSON by 10% and 11% respectively. Regression analysis of urea with the main ions and trace metals measured in parallel suggest that soil and anthropogenic activities significantly contribute to atmospheric urea. Comparison of dry deposition of urea using size segregated deposition velocities with urea collected on a glass bead collector suggested the existence of significant fraction of urea in the gas phase.  相似文献   

15.
The study of a Posidonia oceanica mat (a peat-like marine sediment) core has provided a record of changes in heavy metal abundances (Fe, Mn, Ni, Cr, Cu, Pb, Cd, Zn, As and Al) since the Mid-Holocene (last 4470 yr) in Portlligat Bay (NW Mediterranean). Metal contents were determined in P. oceanica. Both, the concentration records and the results of principal components analysis showed that metal pollution in the studied bay started ca. 2800 yr BP and steadily increased until present. The increase in Fe, Cu, Pb, Cd, Zn and As concentrations since ca. 2800 yr BP and in particular during Greek (ca. 2680-2465 cal BP) and Roman (ca. 2150-1740 cal BP) times shows an early anthropogenic pollution rise in the bay, which might be associated with large- and short-scale cultural and technological development. In the last ca. 1000 yr the concentrations of heavy metals, mainly derived from anthropogenic activities, have significantly increased (e.g. from ~ 15 to 47 μg g− 1 for Pb, ~ 23 to 95 μg g− 1 for Zn and ~ 8 to 228 μg g− 1 for As). Our study demonstrates for the first time the uniqueness of P. oceanica meadows as long-term archives of abundances, patterns, and trends of heavy metals during the Late Holocene in Mediterranean coastal ecosystems.  相似文献   

16.
Measurements of water/air exchange flux of gaseous elemental mercury (GEM) were conducted in a hyper-eutrophic reservoir and a meso-eutrophic reservoir in southwest China in both warm and cold seasons by using a dynamic flux chamber (DFC) method coupled with an automatic gaseous Hg analyzer. Both strong diurnal and seasonal variations of GEM fluxes were observed. The diurnal cycle of the GEM flux was more pronounced during sunny days compared to cloudy and rainy days, which highlights the effect of solar intensity on the GEM flux. GEM fluxes in warm seasons were considerably higher (2.5 to 4.1 times higher) than in cold seasons, which was attributed to the combined factors including meteorological factors, water quality parameters and water Hg concentrations. Clear variation in GEM fluxes was observed between the two reservoirs. Mean GEM fluxes in the hyper-eutrophic reservoir (WJD) (3.2-20.1 ng m−2 h−1) were significantly higher than those in the meso-eutrophic reservoir (SFY) (0.6-4.4 ng m−2 h−1). Evasion of Hg played a distinct role in the mass balance of Hg in the two reservoirs. In WJD, evasion was the second most important mechanism for Hg losses from the reservoir (17.5% of the total losses); whereas in SFY, loss of Hg via volatilization constituted an extremely little portion to the total losses of Hg (0.8%).  相似文献   

17.
Polybrominated diphenyl ethers (PBDEs), perfluorinated alkylated substances (PFAS), and metals were monitored in tile drainage and groundwater following liquid (LMB) and dewatered municipal biosolid (DMB) applications to silty-clay loam agricultural field plots. LMB was applied (93,500 L ha− 1) in late fall 2005 via surface spreading on un-tilled soil (SSLMB), and a one-pass aerator-based pre-tillage prior to surface spreading (AerWay SSD) (A). The DMB was applied (8 Mg dw ha− 1) in early summer 2006 on the same plots by injecting DMB beneath the soil surface (DI), and surface spreading on un-tilled soil (SSDMB). Key PBDE congeners (BDE-47, -99, -100, -153, -154, -183, -209) comprising 97% of total PBDE in LMB, had maximum tile effluent concentrations ranging from 6 to 320 ng L− 1 during application-induced tile flow. SSLMB application-induced tile mass loads for these PBDE congeners were significantly higher than those for control (C) plots (no LMB) (p < 0.05), but not A plots (> 0.05). PBDE mass loss via tile (0-2 h post-application) as a percent of mass applied was ~ 0.04-0.1% and ~ 0.8-1.7% for A and SSLMB, respectively. Total PBDE loading to soil via LMB and DMB application was 0.0018 and 0.02 kg total PBDE ha− 1 yr− 1, respectively. Total PBDE concentration in soil (0-0.2 m) after both applications was 115 ng g− 1 dw, (sampled 599 days and 340 days post LMB and DMB applications respectively). Of all the PFAS compounds, only PFOS (max concentration = 17 ng L− 1) and PFOA (12 ng L− 1) were found above detectable limits in tile drainage from the application plots. Mass loads of metals in tile for the LMB application-induced tile hydrograph event, and post-application concentrations of metals in groundwater, showed significant (< 0.05) land application treatment effects (SSLMB > A > C for tile and SSLMB and A > C for groundwater for most results). Following DMB application, no significant differences in metal mass loads in tile were found between SSDMB and DI treatments (PBDE/PFAS were not measured). But for many metals (Cu, Se, Cd, Mo, Hg and Pb) both SSDMB and DI loads were significantly higher than those from C, but only during < 100 days post DMB application. Clearly, pre-tilling the soil (e.g., A) prior to surface application of LMB will reduce application-based PBDE and metal contamination to tile drainage and shallow groundwater. Directly injecting DMB in soil does not significantly increase metal loading to tile drains relative to SSDMB, thus, DI should be considered a DMB land application option.  相似文献   

18.
Trace metals were analysed in polychaetes collected on Polarstern cruise ANT XXI/2 (2003/04) to the Weddell Sea. Pb concentrations were largely less than 1.3 mg kg−1 DW in all samples analysed. Statistical results indicate that the accumulated Cd, Cu and Zn concentrations are related to the feeding guild to which the animals are belonging. Relatively low Cd and Cu concentrations are found in macrophagous carnivores and relatively high concentrations in microphagous detritus feeders. The relationship between Zn concentrations and the feeding guilds of polychaetes is reverse. Cd concentrations range from (median values and interquantile ranges in brackets) 2.6 (1.5-3.2) mg kg−1 DW in the carnivorous Trypanosyllis gigantea to 133 (37-176) mg kg−1 in the microphagous detritus feeder Lanicides bilobata; Cu concentrations from 16 (11-19) mg kg−1 in the carnivorous Antarctinoe spicoides to 40 (23-68) mg kg−1 in the microphagous detritus feeder Phyllocomus crocea and Zn from 89 (69-97) mg kg−1 in the microphagous detritus feeder Isocirrus yungi to 396 (372-404) mg kg−1 in the carnivorous Aglaophamus trissophyllus. Ni is ranging from 3.7 (1.8-6.0) mg kg−1 in Polyeunoa laevis to 34 (20-41) mg kg−1 in A. spicoides, but no significant differences are obvious regarding the feeding guilds. Since information on metals in Antarctic polychaetes is almost completely lacking, our results suggest further studies to clarify the role of feeding in the bioaccumulation of metals in this ecologically important taxonomic group.  相似文献   

19.
Heavy metal contamination of soils resulting from mining and smelting is causing major concern due to the potential risk involved. This study was designed to investigate the heavy metal (Cu, Zn, Pb and Cd) concentrations in soils and food crops and estimate the potential health risks of metals to humans via consumption of polluted food crops grown at four villages around the Dabaoshan mine, South China. The heavy metal concentrations in paddy and garden soils exceeded the maximum allowable concentrations for Chinese agricultural soil. The paddy soil at Fandong village was heavily contaminated with Cu (703 mg kg− 1), Zn (1100 mg kg− 1), Pb (386 mg kg− 1) and Cd (5.5 mg kg− 1). Rice tended to accumulated higher Cd and Pb concentration in grain parts. The concentrations of Cd, Pb and Zn in vegetables exceeded the maximum permissible concentration in China. Taro grown at the four sampled villages accumulated high concentrations of Zn, Pb and Cd. Bio-accumulation factors for heavy metals in different vegetables showed a trend in the order: Cd > Zn > Cu > Pb. Bio-accumulation factors of heavy metals were significantly higher for leafy than for non-leafy vegetable. The target hazard quotient (THQ) of rice at four sites varied from 0.66-0.89 for Cu, 0.48-0.60 for Zn, 1.43-1.99 for Pb, and 2.61-6.25 for Cd. Estimated daily intake (EDI) and THQs for Cd and Pb of rice and vegetables exceeded the FAO/WHO permissible limit. Heavy metal contamination of food crops grown around the mine posed a great health risk to the local population through consumption of rice and vegetables.  相似文献   

20.
The occurrence of algal taste and odor (T&O) compounds was investigated in three Swiss lakes which exhibit different nutrient levels from eutrophic to oligotrophic (Lake Greifensee, Lake Zurich and Lake Lucerne). Apart from dissolved T&O compounds, the study also encompassed particle-bound compounds, i.e., compounds that can be released from damaged algal cells during drinking water treatment. A combined instrumental (SPME-GC-MS) and sensory method was applied that allowed to detect and quantify T&O compounds in natural waters in the sub ppt to low ppt-range.In addition to the prominent T&O compounds geosmin and 2-methyl-isoborneol (MIB), four other T&O compounds could be detected in the lake waters, though all at relatively low concentrations (maximum concentrations of geosmin 19 ng L−1, MIB 3 ng L−1, β-ionone 27 ng L−1, β-cyclocitral 7 ng L−1, 2-isobutyl-3-methoxypyrazine 2 ng L−1, 2-isopropyl-3-methoxypyrazine 16 ng L−1). The concentration peaks typically occurred in the epilimnion during summer concurrent with a high phytoplankton biomass. Consistently, the concentration levels for most of the compounds varied substantially between the three lakes and generally decreased in the order eutrophic Lake Greifensee > mesotrophic Lake Zurich > oligotrophic Lake Lucerne. Furthermore, our data revealed that the occurrence of β-ionone was largely influenced by Planktothrix rubescens. This is the first time that a correlation between β-ionone and this cyanobacterium has been reported for natural waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号