首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although platinum is commonly used as catalyst on the cathode in microbial electrolysis cells (MEC), non-precious metal alternatives are needed to reduce costs. Cathodes were constructed using a nickel powder (0.5–1 μm) and their performance was compared to conventional electrodes containing Pt (0.002 μm) in MECs and electrochemical tests. The MEC performance in terms of coulombic efficiency, cathodic, hydrogen and energy recoveries were similar using Ni or Pt cathodes, although the maximum hydrogen production rate (Q) was slightly lower for Ni (Q = 1.2–1.3 m3 H2/m3/d; 0.6 V applied) than Pt (1.6 m3 H2/m3/d). Nickel dissolution was minimized by replacing medium in the reactor under anoxic conditions. The stability of the Ni particles was confirmed by examining the cathodes after 12 MEC cycles using scanning electron microscopy and linear sweep voltammetry. Analysis of the anodic communities in these reactors revealed dominant populations of Geobacter sulfurreduces and Pelobacter propionicus. These results demonstrate that nickel powder can be used as a viable alternative to Pt in MECs, allowing large scale production of cathodes with similar performance to systems that use precious metal catalysts.  相似文献   

2.
Microbial electrolysis cells (MECs) provide a high-yield method for producing hydrogen from renewable biomass. One challenge for commercialization of the technology is a low-cost and highly efficient cathode. Stainless steel (SS) is very inexpensive, and cathodes made of this material with high specific surface areas can achieve performance similar to carbon cathodes containing a platinum catalyst in MECs. SS mesh cathodes were examined here as a method to provide a higher surface area material than flat plate electrodes. Cyclic voltammetry tests showed that the electrochemically active surface area of certain sized mesh could be three times larger than a flat sheet. The relative performance of SS mesh in linear sweep voltammetry at low bubble coverages (low current densities) was also consistent with performance on this basis in MEC tests. The best SS mesh size (#60) in MEC tests had a relatively thick wire size (0.02 cm), a medium pore size (0.02 cm), and a specific surface area of 66 m2/m3. An applied voltage of 0.9 V produced a high hydrogen recovery (98 ± 4%) and overall energy efficiency (74 ± 4%), with a hydrogen production rate of 2.1 ± 0.3 m3H2/m3d (current density of 8.08 A/m2, volumetric current density of 188 ± 19 A/m3). These studies show that SS in mesh format shows great promise for the development of lower cost MEC systems for hydrogen production.  相似文献   

3.
There is great interest in hydrogen evolution in bioelectrochemical systems, such as microbial electrolysis cells (MECs), but these systems require non-optimal near-neutral pH conditions and the use of low-cost, non-precious metal catalysts. Here we show that molybdenum disulfide (MoS2) composite cathodes have electrochemical performance superior to stainless steel (SS) (currently the most promising low-cost, non-precious metal MEC catalyst) or Pt-based cathodes in phosphate or perchlorate electrolytes, yet they cost ∼4.5 times less than Pt-based composite cathodes. At current densities typical of many MECs (2-5 A/m2), the optimal surface density with MoS2 particles on carbon cloth was 25 g/m2, achieving 31 mV less hydrogen evolution overpotential than similarly constructed Pt cathodes in galvanostatic tests with a phosphate buffer. At higher current densities (8-10 A/m2) the MoS2 catalyst had 82 mV less hydrogen evolution overpotential than the Pt-based catalyst. MoS2 composite cathodes performed similarly to Pt cathodes in terms of current densities, hydrogen production rates and COD removal over several batch cycles in MEC reactors. These results show that MoS2 can be used to substantially reduce the cost of cathodes used in MECs for hydrogen gas production.  相似文献   

4.
An activated carbon fiber felt (ACFF) cathode lacking metal catalysts is used in an upflow microbial fuel cell (UMFC). The maximum power density with the ACFF cathode is 315 mW m−2, compared to lower values with cathodes made of plain carbon paper (67 mW m−2), carbon felt (77 mW m−2), or platinum-coated carbon paper (124 mW m−2, 0.2 mg-Pt cm−2). The addition of platinum to the ACFF cathode (0.2 mg-Pt cm−2) increases the maximum power density to 391 mW m−2. Power production is further increased to 784 mW m−2 by increasing the cathode surface area and shaping it into a tubular form. With ACFF cutting into granules, the maximum power is 481 mW m−2 (0.5 cm granules), and 667 mW m−2 (1.0 cm granules). These results show that ACFF cathodes lacking metal catalysts can be used to substantially increase power production in UMFC compared to traditional materials lacking a precious metal catalyst.  相似文献   

5.
The development of efficient and economical cathode, operating at ambient temperature and neutral pH is a crucial challenge for microbial electrolysis cell (MEC) to become commercialize hydrogen production technology. In the present work, eight different electrodes are prepared by the electroplating of Ni, Ni–Co and Ni–Co–P on two base metals i.e., Stainless Steel 316 and Copper separately to use as cathode in MEC. Electrodeposited cathode materials have been characterized by XRD, XPS, FESEM, EDX and linear voltammetry. The fabricated cathodes show higher corrosion stability with improved electro-catalytic performance for the hydrogen production in the MECs as compared to the bare cathodes (SS316 and Cu). Data obtained from linear voltammetry and MEC experiments show that developed cathode possess four times higher intrinsic catalytic activity in comparison to bare cathode. Electrodeposited cathodes are intensively examined in membrane-less MEC, operating under applied voltage of 0.6 V in batch mode at 30 ± 2 °C temperature, in neutral pH with acetate as substrate and activated sludge as inoculum. Ni–Co–P electrodeposit on Stainless Steel 316 cathode gives maximum hydrogen production rate of 4.2 ± 0.5 m3(H2)m−3d−1, columbic efficiencies 96.9 ± 2%, overall hydrogen recovery 90.3 ± 4%, overall energy efficiency 241.2 ± 5%, volumetric current density 310 ± 5 Am−3. The net energy recovery and COD removal are 4.25 kJ/gCOD and 61%, respectively. Prepared cathodes show stable performance for continuous 5 batch cycle operations in MEC.  相似文献   

6.
Microbial electrolysis cells (MECs) can be used to treat wastewater and produce hydrogen gas, but low cost cathode catalysts are needed to make this approach economical. Molybdenum disulfide (MoS2) and stainless steel (SS) were evaluated as alternative cathode catalysts to platinum (Pt) in terms of treatment efficiency and energy recovery using actual wastewaters. Two different types of wastewaters were examined, a methanol-rich industrial (IN) wastewater and a food processing (FP) wastewater. The use of the MoS2 catalyst generally resulted in better performance than the SS cathodes for both wastewaters, although the use of the Pt catalyst provided the best performance in terms of biogas production, current density, and TCOD removal. Overall, the wastewater composition was more of a factor than catalyst type for accomplishing overall treatment. The IN wastewater had higher biogas production rates (0.8–1.8 m3/m3-d), and COD removal rates (1.8–2.8 kg-COD/m3-d) than the FP wastewater. The overall energy recoveries were positive for the IN wastewater (3.1–3.8 kWh/kg-COD removed), while the FP wastewater required a net energy input of −0.7–−1.2 kWh/kg-COD using MoS2 or Pt cathodes, and −3.1 kWh/kg-COD with SS. These results suggest that MoS2 is the most suitable alternative to Pt as a cathode catalyst for wastewater treatment using MECs, but that net energy recovery will be highly dependent on the specific wastewater.  相似文献   

7.
Platinum has excellent catalytic capabilities and is commonly used as cathode catalyst in microbial electrolysis cells (MECs). Its high cost, however, limits the practical applications of MECs. In this study, precious-metal-free cathodes were developed by electrodepositing NiMo and NiW on a carbon-fiber-weaved cloth material and evaluated in electrochemical cells and tubular MECs with cloth electrode assemblies (CEA). While similar performances were observed in electrochemical cells, NiMo cathode exhibited better performances than NiW cathode in MECs. At an applied voltage of 0.6 V, the MECs with NiMo cathode accomplished a hydrogen production rate of 2.0 m3/day/m3 at current density of 270 A/m3 (12 A/m2), which was 33% higher than that of the NiW MECs and slightly lower than that of the MECs with Pt catalyst (2.3 m3/day/m3). At an applied voltage of 0.4 V, the energy efficiencies based on the electrical energy input reached 240% for the NiMo MECs. These results demonstrated the great potential of using carbon cloth with Ni-alloy catalysts as a cathode material for MECs. The enhanced MEC performances also demonstrate the scale-up potential of the CEA structure, which can significantly reduce the electrode spacing and lower the internal resistance of MECs, thus increasing the hydrogen production rate.  相似文献   

8.
Although pure Ni catalysts can achieve a hydrogen production rate similar to Pt in microbial electrolysis cells (MECs), a reduction in the amount of Ni used is needed to reduce the cost. In this study, nickel powder (pNi) was blended with activated carbon (AC) to reduce the mass of Ni used, while improving catalytic activity for the hydrogen evolution reaction (HER) by increasing the active surface area. Ni powder blended AC cathodes (AC-pNi) were fabricated at different nickel powder loadings (4.8, 19, 46 mg/cm2 with AC and 77 mg/cm2 without AC as control). AC-pNi4.8 (Ni loading: 4.8 mg/cm2) produced higher hydrogen production rates (0.38 ± 0.04 L-H2/L-d) than pNi77 (0.28 ± 0.02 L-H2/L-d) with a 16 times less Ni loading. Cathodic hydrogen recovery of using the AC-pNi4.8 (98 ± 5%) was also higher than pNi77 (82 ± 4%), indicating catalytic activities were improved by AC blending. Nickel dissolution into the catholyte after completion of each cycle was negligible for AC-pNi4.8 (<0.2 mg/L), while Ni dissolution was detected for pNi77 (5–10 mg/L). These results indicate that AC blending with Ni powder can improve hydrogen production in MECs while minimizing the amount of Ni in the cathode.  相似文献   

9.
High overpotential and soaring prices of the cathode electrode are the bottlenecks for the development of microbial electrolysis technology for hydrogen production. In this study, a novel one-step electrodeposition method has been attempted to fabricate electrodeposited cathodes in situ growth of Ni–Co–S, Ni–S, Co–S catalyst on nickel foam (NF) to reduce the overpotential of electrodes. Finally, a uniform nanosheet with a high specific surface area and more active sites is formed on the NF surface, resulting in a lower overpotential than plain NF. At 0.8 V, the Co–S/NF cathode produces a favorable 42% increase in hydrogen yield (0.68 m3·m−3·d−1), 40% upsurge in current density (10.6 mA/cm3) and 39% rise of cathodic recovery rate (58.0 ± 3.2%) than bare NF, followed by Ni–Co–S/NF and Ni–S/NF cathode. All the electrodeposited electrodes demonstrate enhanced current density and reduced electron losses, thereby achieving efficient hydrogen production. These innovative varieties of electrodes are highly advantageous as they are relatively inexpensive and easy to manufacture with great potential in reducing costs and further real time application in large scale.  相似文献   

10.
Microbial electrolysis cells (MECs) provide an innovative bioelectrochemical approach for hydrogen production using microorganisms as biocatalysts. The development of cost-effective cathodes for near-neutral pH and ambient temperature conditions is the most critical challenge for the practical application of MEC technology. In this study, the electrocatalytic properties of electrodeposited onto carbon felt NiFe-, NiFeP- and NiFeCoP-nanostructures towards HER in neutral and weak acidic solutions were investigated. The voltage needed to initiate hydrogen production and the current production rates were estimated from obtained linear voltammograms. The developed composite materials possess much higher catalytic activity than bare carbon felt. The highest current production rate corresponding to 1.7 ± 0.1 m3H2/day/m2 was achieved with NiFeCoP/carbon felt electrodes. In addition, the applied modifications result in improvement of the corrosion resistance. The obtained results demonstrate that Ni-based nanomodified materials are promising electrocatalysts for HER in near-neutral electrolytes and could be applied as cathodes in MECs.  相似文献   

11.
Most microbial electrolysis cells (MECs) contain only a single set of electrodes. In order to examine the scalability of a multiple-electrode design, we constructed a 2.5 L MEC containing 8 separate electrode pairs made of graphite fiber brush anodes pre-acclimated for current generation using acetate, and 304 stainless steel mesh cathodes (64 m2/m3). Under continuous flow conditions and a one day hydraulic retention time, the maximum current was 181 mA (1.18 A/m2, cathode surface area; 74 A/m3) within three days of operation. The maximum hydrogen production (day 3) was 0.53 L/L-d, reaching an energy efficiency relative to electrical energy input of ηE = 144%. Current production remained relatively steady (days 3–18), but the gas composition dramatically shifted over time. By day 16, there was little H2 gas recovered and methane production increased from 0.049 L/L-d (day 3) to 0.118 L/L-d. When considering the energy value of both hydrogen and methane, efficiency relative to electrical input remained above 100% until near the end of the experiment (day 17) when only methane gas was being produced. Our results show that MECs can be scaled up primarily based on cathode surface area, but that hydrogen can be completely consumed in a continuous flow system unless methanogens can be completely eliminated from the system.  相似文献   

12.
To achieve sustainable hydrogen production by microbial electrolysis cell (MEC) without precious metal catalysts, we examined the potential of thermophilic microorganisms as biocatalysts on the cathode of MEC. A biocathode was firstly developed in a single-chambered MEC operated at 55 °C and further analyzed in a two-chambered MEC. Linear sweep voltammetry showed that the biocathode had a reducing activity significantly higher than the control electrodes (bioanode or non-inoculated electrode). At the potential of −0.8 V vs. SHE, the thermophilic biocathode produced a current density of 1.28 ± 0.15 A m−2 and an H2 production rate of 376.5 ± 73.42 mmol day−1 m−2, which were around 10 times higher than those of the non-inoculated electrode, with the cathodic H2 recovery of ca. 70%. The molecular-phylogenetic analysis of the bacteria on the biocathode indicated that the community was comprised of six phyla, in which Firmicutes was the most populated phylum (77% of the clones in the 16S rRNA library).  相似文献   

13.
Microbial electrolysis cells (MECs) could be integrated with dark fermentative hydrogen production to increase the overall system yield of hydrogen. The influence of catholyte pH on hydrogen production from MECs and associated parameters such as electrode potentials (vs Ag/AgCl), COD reduction, current density and quantity of acid needed to control pH in the cathode of an MEC were investigated. Acetate (10 mM, HRT 9 h, 24 °C, pH 7) was used as the substrate in a two chamber MEC operated at 600 mV and 850 mV applied voltage. The effect of catholyte pH on current density was more significant at an applied voltage of 600 mV than at 850 mV. The highest hydrogen production rate was obtained at 850 mV, pH 5 amounting to 200 cm3stp/lanode/day (coulombic efficiency 60%, cathodic hydrogen recovery 45%, H2 yield 1.1 mol/mol acetate converted and a COD reduction of 30.5%). Within the range (18.5–49.4 °C) of temperatures tested, 30 °C was found to be optimal for hydrogen production in the system tested, with the performance of the reactor being reduced at higher temperatures. These results show that an optimum temperature (approximately 30 °C) exists for MEC and that lower pH in the cathode chamber improves hydrogen production and may be needed if potentials applied to MECs are to be minimised.  相似文献   

14.
To better understand the reactivation of nickel cathodes by iron, the study was performed on iron membranes in 25% KOH at 80 °C. Membranes were cathodically treated and anodically polarised, and simultaneously hydrogen permeation was measured with the electrochemical technique. During cathodic potential sweeps, three peaks of current and of hydrogen permeation occurred. The peaks at about −0.80 V and −1.30 V vs. SHE were ascribed to reduction of Fe3O4 to HFeO2 and H+, and of HFeO2 to Fe, respectively. Electric charge of anodic oxidation of cathodically pretreated membranes was by over two orders of magnitude higher than the charge of desorbing hydrogen, and it increased with the pretreatment time. This was ascribed mainly to the oxidation of iron and its corrosion products. It was proposed that the reactivating effect of iron on Ni cathodes can be associated with the enhanced reactivity of iron freshly deposited by reduction of HFeO2.  相似文献   

15.
Gas diffusion cathodes with electrodeposited nickel (Ni) particles have been developed and tested for hydrogen production in a continuous flow microbial electrolysis cell (MEC). A high catalytic activity of electrodeposited Ni particles in such a MEC was obtained without a proton exchange membrane, i.e. under direct cathode exposure to anodic liquid. Co-electrodeposition of Pt and Ni particles did not improve any further hydrogen production. The maximum hydrogen production rate was 5.4 L/LR/day, corresponding to Ni loads between 0.2 and 0.4 mg cm−2. Continuous MEC operation demonstrated stable hydrogen production for over one month. Owing to the fast hydrogen transport through the cathodic gas diffusion layer, the loss of hydrogen production to methanogenic activity was minimal, generally with less than 5% methane in the off-gas. Overall, gas diffusion cathodes with electrodeposited Ni particles demonstrated excellent stability for hydrogen production compared to expensive Pt cathodes.  相似文献   

16.
Various metal nanoparticle catalysts supported on Vulcan XC-72 and carbon-nanomaterial-based catalysts were fabricated and compared and assessed as substitutes of platinum in microbial electrolysis cells (MECs). The metal-nanoparticle-loaded cathodes exhibited relatively better hydrogen production and electrochemical properties than cathodes coated with carbon nanoparticles (CNPs) and carbon nanotubes (CNTs) did. Catalysts containing Pt (alone or mixed with other metals) most effectively produced hydrogen in terms of overall conversion efficiency, followed by Ni alone or combined with other metals in the order: Pt/C (80.6%) > PtNi/C (76.8%) > PtCu/C (72.6%) > Ni/C (73.0%) > Cu/C (65.8%) > CNPs (47.0%) > CNTs (38.9%) > plain carbon felt (38.7%). Further, in terms of long-term catalytic stability, Ni-based catalysts degraded to a lesser extent over time than did the Cu/C catalyst (which showed the maximum degradation). Overall, the hydrogen generation efficiency, catalyst stability, and current density of the Ni-based catalysts were almost comparable to those of Pt catalysts. Thus, Ni is an effective and inexpensive alternative to Pt catalysts for hydrogen production by MECs.  相似文献   

17.
The substitution of noble metal platinum catalyst is one of the important research contents for sustainable development and is also the key to the practical application of photoelectrochemical (PEC) hydrogen production. In this work, we loaded the 1T-2H mixed phase MoS2 on the hydrogenated anatase/rutile heterophase TiO2 (A-H-RTNA) by hydrothermal method to prepare a new MoS2/A-H-RTNA electrode material. The prepared material exhibited higher carrier density, lower PL intensity and higher conductivity than Pt/A-H-RTNA because 1T-MoS2 has more active sites and lower charge transfer resistance than Pt. With the bias voltage of −0.4 V, the optimized 16MoS2/A-H-RTNA as photocathode shows the largest PEC hydrogen production rate of 1840 mmol m−2 h−1, which is 2.9 and 2.2 times higher than those of A-H-RTNA (625 mmol m−2 h−1) and Pt/A-H-RTNA (848 mmol m−2 h−1), respectively. We innovatively used the prepared 16MoS2/A-H-RTNA film as counter electrode instead of Pt electrode to construct a PEC system without any noble-metal. The result demonstrates that the noble-metal-free MoS2 loaded on TiO2 electrode as counter electrode has 75% PEC activity of noble metal Pt electrode. This study develops a PEC method for hydrogen evolution, which no longer depends on precious metal platinum as cathode.  相似文献   

18.
Thin-film solid oxide fuel cells (SOFCs) with large (5-mm square) membranes and ultra-thin La0.6Sr0.4Co0.8Fe0.2O3−δ (LSCF) cathodes have been fabricated and their electrochemical performance was measured up to 500 °C. A grid of plated nickel on the cathode with 5–10 μm linewidth and 25–50 μm pitch successfully supported a roughly 200-nm-thick LSCF/yttria-stabilized zirconia/platinum membrane while covering less than 20% of the membrane area. This geometry yielded a maximum performance of 1 mW cm−2 and 200 mV open-circuit voltage at 500 °C. Another approach toward realizing large area fuel cell junctions consists of depositing the membrane on a smooth substrate, covering it with a high-porosity material formed in situ, then removing the substrate. We have used a composite of silica aerogel and carbon fiber as the support, and show that this material can be created in flow channels etched into the underside of a silicon chip bonded to the top of the SOFC membrane. We anticipate these integrated fuel cell devices and structures to be of relevance to advancing low-temperature SOFCs for portable applications.  相似文献   

19.
The optimum values of hydraulic retention time (HRT) and organic loading rate (OLR) of an anaerobic sequencing batch reactor (ASBR) for biohydrogen production from palm oil mill effluent (POME) under thermophilic conditions (60 °C) were investigated in order to achieve the maximum process stability. Microbial community structure dynamics in the ASBR was studied by denaturing gradient gel electrophoresis (DGGE) aiming at improved insight into the hydrogen fermentation microorganisms. The optimum values of 2-d HRT with an OLR of 60 gCOD l−1 d−1 gave a maximum hydrogen yield of 0.27 l H2 g COD−1 with a volumetric hydrogen production rate of 9.1 l H2 l−1 d−1 (16.9 mmol l−1 h−1). The hydrogen content, total carbohydrate consumption, COD (chemical oxygen demand) removal and suspended solids removal were 55 ± 3.5%, 92 ± 3%, 57 ± 2.5% and 78 ± 2%, respectively. Acetic acid and butyric acid were the major soluble end-products. The microbial community structure was strongly dependent on the HRT and OLR. DGGE profiling illustrated that Thermoanaerobacterium spp., such as Thermoanaerobacterium thermosaccharolyticum and Thermoanaerobacterium bryantii, were dominant and probably played an important role in hydrogen production under the optimum conditions. The shift in the microbial community from a dominance of T. thermosaccharolyticum to a community where also Caloramator proteoclasticus constituted a major component occurred at suboptimal HRT (1 d) and OLR (80 gCOD l−1 d−1) conditions. The results showed that the hydrogen production performance was closely correlated with the bacterial community structure. This is the first report of a successful ASBR operation achieving a high hydrogen production rate from real wastewater (POME).  相似文献   

20.
The recent interest in microbial electrolysis cell (MEC) technology has led the research platform to develop full biological MECs (bioanode-biocathode, FB-MEC). This study focused on biohydrogen production from a biologically catalyzed MEC. A bioanode and a biocathode were initially enriched in a half biological MFC (bioanode-abiocathode, HB-MFC) and a half biological MEC (abioanode-biocathode, HB-MEC), respectively. The FB-MEC was established by transferring the biocathode of the HB-MEC and the bioanode of the HB-MFC to a two-chamber MEC. The FB-MEC was operated under batch (FB-MEC-B) and recirculation batch (FB-MEC-RB) modes of operation in the anodic chamber. The FB-MEC-B reached a maximum current density of 1.5 A/m2 and the FB-MEC-RB reached a maximum current density of 2.5 A/m2 at a similar applied voltage while the abiotic control system showed the maximum of 0.2 A/m2. Hydrogen production rate decreased in the FB-MEC compared to that of the HB-MEC. However, the cathodic hydrogen recovery increased from 42% obtained in the HB-MEC to 56% in the FB-MEC-B and 65% in the FB-MEC-RB, suggesting the efficient oxidation and reduction rates in the FB-MEC compared to the HB-MEC. The onset potential for hydrogen evolution reaction detected by linear sweep voltammetry analysis were −0.780 and −0.860 V vs Ag/AgCl for the FB-MEC-RB and the FB-MEC-B (−1.26 for the abiotic control MEC), respectively. Moreover, the results suggested that the FB-MEC worked more efficiently when the biocathode and the bioanode were enriched initially in half biological systems before transferring to the FB-MEC compared to that of the simultaneously enriched in one system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号