共查询到18条相似文献,搜索用时 62 毫秒
1.
把Hooke-Jeeves 模式搜索方法作为人工鱼群算法的一个局部搜索算子,嵌入到带变异算子的人工鱼群算法中,提出一种基于变异算子的人工鱼群混合算法。其中,Hooke-Jeeves的强局部搜索能力提高了人工鱼群混合算法的局部收敛速度,变异算子的引入增加了群体的多样性,避免人工鱼群混合算法陷入局部最优。通过基准函数和实例测试验证,表明了该算法是高效可行的。 相似文献
2.
3.
针对人工鱼群算法存在易陷入局部最优、鲁棒性差以及寻优精度低的问题,提出了反向自适应高斯变异的人工鱼群算法。改进后的算法引入了反向解,根据反向解调整人工鱼的移动方向以及位置,从而提供更多的机会发掘潜在的较优空间,使人工鱼群快速跳出局部最优,从全局角度提升算法的搜索性能。同时提出了一种非线性自适应视野步长策略,更好地平衡了全局搜索与局部搜索之间的关系。为了增加鱼群的多样性,降低人工鱼陷入早熟的可能性,提出了一种最优解引导的高斯变异机制。仿真实验结果表明,该算法能有效地提高人工鱼群的寻优精度、寻优质量及鲁棒性,并且避免了人工鱼群过早收敛。 相似文献
4.
针对人工鱼群算法存在的全局搜索能力欠缺, 鲁棒性差及易陷入局部极值等不足, 提出一种自适应差分变异的人工鱼群算法(ADMAFSA). 首先, 该算法采用自适应视野和步长策略, 改善种群个体在较优区域的精细搜索能力, 提升算法的寻优精度. 其次, 在人工鱼群的随机行为中引入反向学习机制, 通过发掘潜在的寻优空间, 提高算法的全局搜索性能, 避免算法早熟收敛. 最后, 借鉴差分进化算法对质量较差的人工鱼进行变异操作, 从而增加鱼群的多样性, 降低算法陷入局部极值的可能性. 为验证改进算法的性能, 本文对6个基准测试函数和8个CEC2019函数进行仿真, 与其他AFSA变体、新型智能算法进行对比, 实验结果表明, ADMAFSA在寻优精度和鲁棒性方面均有所提高. 最后, 在齿轮系设计问题上, 进一步证明了改进算法具有较好的优化效果. 相似文献
5.
对于特定谐波消除调制策略(SHEPWM)的开关角求解问题,传统数值方法需要提供方程的特定初值,现有的智能算法如遗传算法容易陷入局部最优解中。针对以上不足,将人工鱼群算法引入到非线性超越消谐方程组的求解,因其具有较好的全局收敛性,通过群体寻优较易达到全局最优解,同时为了避免鱼群搜索的盲目性,利用差分进化算法的快速局部收敛性,将二者相结合,有效地提高了进化效率。为了验证新算法的可行性,用MATLAB/Simulink仿真软件,将求解出的开关角用于两电平逆变器进行仿真研究,并利用以TMS320F28335为核心的实验平台进行了实验,实验证明了所求解能够消除选定的低频次谐波。 相似文献
6.
深入分析人工鱼群算法和蟑螂算法的特点基础,提出一种改进式蟑螂算法。将差分进化变异因子、禁忌表分别引入到蟑螂算法,加快了算法的搜索速度和获得全局最优解的能力。采用权衡种群中最优个体和精英个体之间的差异度的方式将改进后的蟑螂算法和人工鱼群算法动态融合。仿真实验表明将这种动态融合后的算法解决网格任务调度问题可以获得较好的调度效果。 相似文献
7.
8.
人工鱼群基本算法在求解多峰函数最优值时,存在计算精度有限,易陷入局部最优,鲁棒性较差以及收敛速率较慢和搜索效率较低的缺点,而随机移动算子的随机性是造成这些缺点的重要因素。通过引入粒子群算法思想和自适应扰动的思想对随机移动算子进行改进,进而提出了基于粒子群算法的人工鱼群算法(PSO-AFSA)和包含自适应扰动项的改进人工鱼群算法(ADI-AFSA),并证明了两种改进算法的收敛性。利用公认测试函数集进行仿真实验,结果表明两种改进算法与人工鱼群基本算法及其传统改进算法相比,提高了计算精度、收敛速率、搜索效率并且具有更好的鲁棒性。 相似文献
9.
求解全局优化问题的混合人工鱼群算法 总被引:3,自引:0,他引:3
把Powell算法作为人工鱼群算法的一个局部搜索算子,嵌入到自适应人工鱼群算法中,构成一种基于Powell算法和自适应人工鱼群的混合算法。该算法充分利用了自适应人工鱼群算法的全局收敛性和Powell算法的强局部搜索能力,使得混合算法的全局收敛性能得到了改善,并且减少了计算量。计算机仿真结果表明,自适应混合人工鱼群算法能够在保持较高精度的前提下快速收敛。 相似文献
10.
11.
基于单纯形法的双群人工鱼群算法 总被引:4,自引:0,他引:4
针对基本人工鱼群算法中人工鱼漫无目的随机游动或在非全局极值点的大量聚集的不足,提出了一种基于单纯形法的双群人工鱼群算法.在该算法中,两个不同的子群并行游动,通过子群重组进行子群间的信息交换,实现鱼群在解空间的探索和搜索能力,然后通过单纯形法进行局部再搜索.基于典型的函数和实例测试验证,表明该算法收敛速度快、精度高,具有更好的性能. 相似文献
12.
13.
14.
针对人工鱼群算法在复杂多峰函数优化问题上寻优精度低、后期搜索能力减弱且运行时间长等问题,提出一种基于多核机群的人工鱼群并行算法(PDN-AFS)。首先对人工鱼群算法的优势与不足进行分析,采用动态权衡因子策略并适时引入小生境机制,提出一种新的人工鱼群(DN-AFS)算法;然后根据多核机群的并行编程模型(MPI+OpenMP),对DN-AFS算法进行并行设计与分析,提出基于多核机群的人工鱼群并行算法;最后在多核机群环境下进行仿真实验。实验结果表明:该算法有效地提高了复杂多峰函数优化问题的收敛速度和寻优性能,并获得了较高的加速比。 相似文献
15.
基于人工鱼群算法的机器人路径规划 总被引:1,自引:0,他引:1
首先采用链接图建立机器人工作空间模型,用Dijkstra算法求得链接图最短路径;然后使用人工鱼群算法对此路径进行优化,最终得到全局最优路径。以一个路径为例,进行了实际编程计算,结果表明,基于人工鱼群算法的机器人路径规划方法,具有较快的收敛性和较高的计算精度。 相似文献
16.
求解多背包问题的人工鱼群算法 总被引:1,自引:0,他引:1
多背包问题是出现在现实世界中许多领域的一个NP-hard组合优化问题。提出一种基于人工鱼觅食,追尾、聚群等行为的求解多背包问题的优化算法。针对多约束导致大量非可行解的产生而使算法性能劣化的问题,采用基于启发式规则的调整算子,使人工鱼始终在可行解域中寻优。数值实验结果表明,提出的算法能够快速搜索到最优解。算法对其他有约束组合优化问题也具有应用价值。 相似文献
17.
针对基于BP神经网络室内定位算法收敛速度慢和定位精度低的问题,提出了改进的人工鱼群算法( AFSA)和距离加权质心法。通过改进人工鱼觅食和寻优方式来提高人工鱼全局寻优的能力和速度,并用该算法来选取室内定位神经网络参数;通过改进的加权质心法计算距离,以减小室内复杂环境干扰造成的定位的误差。实验证明该改进方法使室内定位的平均精度比BP神经网络模型提高8%左右,并提高了室内定位的可靠性。 相似文献
18.
针对人工鱼群算法后期搜索速度慢、不易得到精确解等问题,结合社会学习机制提出一种改进算法。当人工鱼群算法进行到优化后期时,使用群体社会学习机制中的趋同和趋异行为进行寻优。两种行为搜索速度快,寻优精度高,且趋异现象提高了群体的多样性,增强了跳出局部极值的能力,在一定程度上改善了原算法的搜索性能。仿真实验结果表明了改进算法的可行性和有效性。 相似文献