首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
为提高短期负荷预测模型的精确度,研究了一种基于径向基函数(radial basis function,RBF)神经网络参数优化的短期负荷预测方法。首先,对短期负荷影响因素进行分析,建立了计及温度累积效应的温度变量量化模型和计及负荷修正的日期类型变量量化模型;其次,建立基于RBF神经网络的短期负荷预测模型,分别基于近邻传播算法和遗传算法对RBF神经网络隐层节点的中心矢量和基宽参数进行优化;最后,基于某地区轻工业行业的夏季负荷数据进行了算例分析,结果表明,相比于未考虑参数优化的预测模型,可在一定程度上提高短期负荷的预测精度。  相似文献   

2.
基于径向基函数网络的短期负荷预测   总被引:26,自引:3,他引:26  
提出了一种基于径向基函数网络的短期负荷预测方法,采用快速混合算 法有效地解决了径向基函数网络的学习问题,学习样本选择时综合考虑了日期类型、温度、 天气等因素的影响,在实际应用中证明了此方法的有效性。  相似文献   

3.
基于小波网络的短期负荷预测方法   总被引:5,自引:0,他引:5  
提出一种基于小波网络的短期负荷预测模型,小波网络结合了小波变换良好的时频局域性质和神经网络的自学习能力,因此具有比神经网络更灵活的函数逼近能力,同时有效地改善了神经网络难于合理确定网络结构、存在局部最优等缺陷,算例表明,这种模型是快速准确的。  相似文献   

4.
基于模糊聚类的神经网络短期负荷预测方法   总被引:10,自引:12,他引:10  
姜勇 《电网技术》2003,27(2):45-49
针对电力负荷的特点,综合考虑天气、日类型、历史负荷等对未来负荷变化的影响,提出了一种新的短期负荷预测方法。通过模糊聚类选取学习样本,采用反向传播算法,对24点每点建立一个预测模型。该方法充分发挥了神经网络和模糊理论处理非线性问题的能力,提高了学习效能,在负荷平稳的季节和负荷波动较大的季节都具有较好的预测精度。  相似文献   

5.
提出了应用混合GN(GaussNewton)-BFGS(BroydenFletcherGoldfarbShanno)法进行RBF(径向基函数)神经网络学习的算法。这种方法结合GN法与BFGS法的特点,既尽可能地利用了问题本身的特殊结构,又能取得超线性甚至二次渐近收敛率,因此有效地提高了学习效率。在学习过程中,利用该方法能够区分零残量和非零残量,并利用这种特点进行隐层神经元数目的自动调整,从而可以保证神经网络的学习能力和推广能力。多个实际电网的负荷预测结果表明,该方法同神经网络的其他算法相比,具有训练时间短、预测精度高的特点。  相似文献   

6.
基于GN-BFGS算法的RBF神经网络短期负荷预测   总被引:4,自引:3,他引:4       下载免费PDF全文
提出了应用混合 GN( Gauss- Newton) - BFGS( Broyden- Fletcher- Goldfarb- Shanno)法进行RBF(径向基函数 )神经网络学习的算法。这种方法结合 GN法与 BFGS法的特点 ,既尽可能地利用了问题本身的特殊结构 ,又能取得超线性甚至二次渐近收敛率 ,因此有效地提高了学习效率。在学习过程中 ,利用该方法能够区分零残量和非零残量 ,并利用这种特点进行隐层神经元数目的自动调整 ,从而可以保证神经网络的学习能力和推广能力。多个实际电网的负荷预测结果表明 ,该方法同神经网络的其他算法相比 ,具有训练时间短、预测精度高的特点  相似文献   

7.
一种基于径向基函数的短期负荷预测方法   总被引:19,自引:5,他引:19  
赵剑剑  张步涵  程时杰  陆俭 《电网技术》2003,27(6):22-25,32
为克服传统K均值聚类法局部寻优的缺陷,提出了基于确定性退火聚类选取径向基函数(RBF)网络隐层节点中心的方法,并采用遗传算法有效地解决了径向基函数网络的学习问题。在选择学习样本时,根据相似度方法,综合考虑了日期类型、星期类型、天气因素和曲线特性的影响。实际应用表明本方法能够改善预测精度,提高预测速度。  相似文献   

8.
基于模式识别技术的短期负荷预测   总被引:4,自引:0,他引:4  
赵凯  石峰 《湖南电力》2000,20(6):1-3,12
分析影响电力负荷的主要因素,并提出了一种基于模式识别技术选取负荷样本,利用人工神经网络进行负荷预测的方法。设计了一套可以自动完成负荷数据的收集、甄别和预处理,对负荷预测过程进行灵活控制,达到一定的预测精度,并具有美观实用的结果输出和演示功能的短期负荷预测系统。  相似文献   

9.
提出了应用混合GN(Gauss-Newton)-BFGS(Broyden-Fletcher-Goldfarb-Shanno)法进行RBF(径向基函数)神经网络学习的算法。这种方法结合GN法与BFGS法的特点,既尽可能地利用了问题本身的特殊结构,又能取得超线性甚至二次渐近收敛率,因此有效地提高了学习效率。在学习过程中,利用该方法能够区分零残量和非零残量,并利用这种特点进行隐层神经元数目的自动调整,从而可以保证神经网络的学习能力和推广能力。多个实际电网的负荷预测结果表明,该方法同神经网络的其他算法相比,具有训练时间短、预测精度高的特点。  相似文献   

10.
基于神经网络的电力系统短期负荷预测研究   总被引:38,自引:21,他引:38  
周佃民  管晓宏  孙婕  黄勇 《电网技术》2002,26(2):10-13,18
电力系统负荷预测是电力生产部门的重要工作之一,作者利用BP神经网络进行电力系统短期负荷预测,在保证有足够的训练样本的前提下,对预测模型进行合理分类,构造了相应于不同季节的周预测,日预测模型,并对输入变量的选择,特别是温度的选取问题,进行了讨论,在神经网络训练的过程中,往往会出现过拟合的现象,给预测的结果带来不利的影响,为此在训练过程中,将样本随机地分离为训练集和测试集来防止这个问题,典型算例的计算表明,该方法是有效的。  相似文献   

11.
一种基于小波神经元网络的短期负荷预测方法   总被引:12,自引:4,他引:12  
小波神经元网络比多层前馈神经网络具有更多自由度和更好的适应性.为更好地反映气象因素对负荷的影响及提高负荷预测的精度,文章选用Morlet小波构建小波神经元网络,采用误差反传学习算法来训练网络,采用自学习隶属度分析聚类的新方法选择训练样本.并应用武汉电网近年的负荷数据和气象资料进行了建模和预测,预测结果表明所建立的小波神经元网络预测模型具有较好的收敛性,采用自学习隶属度分析聚类方法选择训练样本能改善预测精度.  相似文献   

12.
基于免疫支持向量机方法的电力系统短期负荷预测   总被引:11,自引:3,他引:11  
吴宏晓  侯志俭 《电网技术》2004,28(23):47-51
在对支持向量机(Support Vector Machines,SVM)方法的参数性能进行分析的基础上,提出了一种免疫支持向量机方法来预测电力系统短期负荷,其中利用免疫算法来优化支持向量机方法的参数.免疫算法是根据人类或其它高等动物免疫系统的机理而设计的,通过仿真抗原和抗体之间的相互作用过程,有效地克服了未成熟收敛现象,提高了群体的多样性.电力系统短期负荷预测的实际算例表明,与支持向量机方法相比,本文所提免疫支持向量机方法具有更高的预测精度.  相似文献   

13.
针对实时电价对短期负荷的影响,建立了径向基(RBF)神经网络和自适应神经网络模糊系统(ANFIS)相结合的短期负荷预测模型.该模型利用RBF神经网络的非线性逼近能力对不考虑电价因素的预测日负荷进行了预测,并根据近期实时电价的变化,应用ANFIS系统对RBF神经网络的负荷预测结果进行修正,以使固定电价时代的预测方法在电价敏感环境下也能达到较好的预测精度,克服了神经网络在电力市场下进行负荷预测时存在的不足.某电网实际预测结果表明,该方法具有较好的预测效果.  相似文献   

14.
基于人工免疫网络的短期负荷预测模型   总被引:16,自引:5,他引:16  
为了克服传统神经网络预测方法在网络结构设计、学习算法和收敛效果等方面存在的缺陷,通过借鉴免疫网络调节与免疫规划,该文提出了一种基于人工免疫网络的短期负荷预测模型。在人工免疫网络的设计中,创造性地融入了免疫调节原理,利用免疫规划来进化网络结构,采用了新的个体编码方式,神经元适应度函数和自适应混沌变异算子,通过免疫规划进行网络结构的设计,并结合免疫网络调节的进化算法进行网络的学习。电力系统短期负荷预测的计算实例表明,基于人工免疫网络的负荷预测方法与传统神经网络预测方法相比,具有较强的自适应能力和较好的效果。  相似文献   

15.
基于模糊聚类分析与改进BP算法的电力系统短期负荷预测   总被引:16,自引:10,他引:16  
提出了一种基于模糊聚类分析和BP网络的短期负荷预测方法.考虑了温度、相对湿度以及日类型等影响负荷的因素,通过模糊聚类分析将负荷历史数据分成若干类,找出同预测日相符的预测类别,然后建立相应的BP网络模型,用附加动量和变学习速率的方法预测每小时的负荷.对于西安地区实际负荷的预测结果的分析表明该方法有较高的预测精度,取得了令人满意的结果.  相似文献   

16.
基于小波分解和人工神经网络的短期负荷预测   总被引:25,自引:9,他引:25  
提出了一种基于小波分解和人工神经网络(ANN)的电力系统短期负荷预测方法.通过小波变换把负荷序列分解为不同频段的子序列,再对这些子序列分别采用相匹配的人工神经网络模型进行预测,最后综合得到负荷序列的最终预测结果.在所提出的方法中小波分解能够提取负荷的一些周期性和非线性特征,并对其进行进一步细分,根据其子序列各自所具有的规律采用相应的预测方法;而ANN对于处理非线性及无法显示明确规律的问题具有优势.经实例验证,与传统方法相比该方法具有很高的预测精度和较强的适应能力.  相似文献   

17.
电力系统短期负荷预测的混合模型神经元网络方法   总被引:5,自引:4,他引:5  
提出了一种将线性模型方法和神经元网络方法相结合的负荷预测方法--混合模型神经元网络方法。该方法将一部分线性变化的负荷分量用线性模型描述,其它发量用神经元网络建立,国而同时具有线性模型的优点和神经元网络的优点。交过一方法用于江苏省连云港市超前24小时负荷预测,取得了比单纯的神经元网络模型高的预测精度。  相似文献   

18.
采用谱分析建模和基于人工神经网络的短期负荷预测方案   总被引:4,自引:1,他引:4  
张雪莹  管霖  谢锦标 《电网技术》2004,28(11):49-52
提出了一种基于谱分析法进行建模的短期负荷预测方案,该方案利用负荷历史数据的谱分析结果进行人工神经网络(ANN)模式分类和选择输入变量.方案采用快速傅立叶变换(FFT)进行负荷数据预处理,运用滤波算法及小时负荷曲线的频谱分析来研究电网负荷的周期特性,所得结果表明四季负荷的谱特性具有明显差异,应采用不同的模型和方案进行预测.谱分析有助于各时段预测方案提取输入变量.利用该思路构造的基于人工神经网络的负荷预测方案被用于预测广东省网的负荷,与其他普遍采用的输入变量预测结果的对比表明,所提方案在短期负荷预测中的性能良好.  相似文献   

19.
应用人工神经网络进行短期负荷预测   总被引:11,自引:5,他引:11  
本文提出了一种应用人工神经网络进行电力系统短期负荷预测的方法。负荷按照每周各日进行分类,共七种模式,学习样本选取每周中的相同类型日。为了提高预测精度,对原始数据中的伪数据进行清除,对于那些可以预料到的随机干扰,应用专家系统原理予以处理。通过对银川供电局负荷的实际预测,表明本文所提供方法可以实际应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号