首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
铌钼镍对过冷灰铸铁组织和性能的影响   总被引:1,自引:0,他引:1  
符莉  翟启杰 《铸造》1997,(4):26-27
铌、钼、镍三种元素可使灰铸铁力学性能提高,其中以铌的综合作用最为显著,而钼对硬度影响最大。过冷灰铸铁石墨形貌的改变是力学性能提高的主要原因,钼的加入,促使自由渗碳体析出,导致硬度显著提高。  相似文献   

2.
介绍铌在铸铁中的作用及含铌铸铁的组织和性能,其中包括铌在铸铁中的存在形态,铌对灰铸铁、过冷灰铸铁及冷硬铸铁组织和性能的影响,并对比介绍了铌、镍、钼三种元素对冷硬铸铁高温性能的影响。  相似文献   

3.
铌在铸铁生产中应用研究与展望   总被引:6,自引:0,他引:6  
翟启杰  张立波 《铸造》1998,(10):41-46
铌在铸铁生产中应用与研究结果表明,微量铌元素可使灰铸铁、过冷灰铸铁及含微量铌、钼、镍三种冷硬铸铁的力学性能等得到改善。铌在铸铁中除以固溶方式存在于基体中之外,还有富铌相存在。它有三种形态,团块状的NbC相;独立存在的条状铁碳铌复杂相;与珠光体中渗碳体构成统一整体的渗碳体型铁碳铌化合物。  相似文献   

4.
在消失模铸造条件下,通过向铁液中加入硫铁增硫的方法改变铸铁的含硫量,研究了含硫量的变化(0.0270%~0.143%)对灰铸铁微观组织和力学性能的影响.结果表明:当含硫量小于0.121%时,薄壁灰铸铁中过冷石墨的数量随着硫量的增加而减少,当含硫量增至0.143%时,过冷石墨基本消除;在试验成分范围内,随着含硫量的增加,灰铸铁的抗拉强度及硬度先提高后降低,当硫含量在0.078%~0.121%范围时,灰铸铁的微观组织和力学性能最为理想.  相似文献   

5.
Nb、Mo含量对高钢级管线钢组织性能的影响   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟试验机并结合微观组织和力学性能测试,分析了不同铌、钼含量对管线钢的组织、力学性能和CCT曲线的影响.结果表明:随钼的质量分数增加,针状铁索体的含量增加,并且出现了M-A组织.铌在钢中可抑制奥氏体的再结晶,保持变形效果从而细化铁素体晶粒,得到细小的贝氏体组织,并且铌含量的增加使得管线钢强度和硬度鄙相应增大,冲击韧度降低.在连续冷却转变过程中,钼元素的加入使相变点温度降低,在相同的冷却条件下容易发生贝氏体转变,并使其CCT曲线向右移.而铌元素的加入增大了过冷奥氏体的稳定性,相变点温度降低,并且推迟珠光体的转变.  相似文献   

6.
铸造企业为了降低生产成本,常使用廉价的废钢原料,其中常含有微量的铅,导致成品铸件的合格率下降。使用高频无芯感应电炉熔炼制备不同铅含量的灰铸铁试样,利用金相显微镜观察分析灰铸铁试样的石墨形态与基体组织,使用洛氏硬度计测量灰铸铁的硬度,探究了铅含量对灰铸铁组织和力学性能的影响。结果表明:随铅含量增加,片状无方向性均匀分布的A型石墨逐渐减少,过冷石墨增加。当Pb含量低于0.018%时,铸件硬度增加;但当Pb含量高于0.018%时,硬度显著下降。  相似文献   

7.
研究了Sn、Nb合金化对高碳当量灰铸铁组织和力学性能的影响。采用光学显微镜、扫描电镜和材料力学试验机,分析了不同合金化灰铸铁的微观组织,测定了硬度、抗压强度和弹性模量。结果表明:Sn对铸铁中片状石墨有显著细化作用,Nb可显著细化珠光体组织,而Sn、Nb复合合金化对石墨和珠光体均有显著细化作用,同时较显著地提高了灰铸铁的力学性能。  相似文献   

8.
用阶梯试样研究了铸件壁厚对不同硅含量灰铸铁组织和力学性能的影响。结果表明,在本试验研究范围内,w_(Si)=1.25的灰铸铁内石墨数量比w_(Si)=2.27的灰铸铁的少。随着铸件厚度的增加,前者过冷石墨减少,基体组织按大量莱氏体+少量珠光体→珠光体+少量碳化物→单一珠光体的规律演变,同时伴随着硬度的减小,而后者由于Si含量较多,促进了合金元素的偏析,过冷石墨反而增多,硬度增大,基体组织均为珠光体+少量铁素体。前者抗拉强度和不同厚度断面的布氏硬度均比后者相应值高。  相似文献   

9.
铌在灰铸铁中的行为   总被引:2,自引:2,他引:0  
研究了庆铸铁中含有1.2%以下的铌时所形成的铌化物的存在形态,及其对组织与硬度的影响。结果表明:灰铸铁中含有一定量铌后形成了铌化物,细化了基体和石墨组织,提高了基体的显微硬度与宏观硬度。  相似文献   

10.
铁神一号净化剂对灰铸铁组织和力学性能的影响   总被引:4,自引:0,他引:4  
利用中频感应电炉熔炼灰铸铁铁液,水玻璃砂造型,浇注铸造阶梯试样、φ30mm试棒以及热分析试样,研究了净化剂对其结晶过冷度、组织和力学性能的影响。试验结果表明,单独加入净化剂0.6%可以增加过冷倾向,细化石墨,降低断面敏感性;可以提高灰铸铁的抗拉强度和冶金质量指标;同时加入净化剂0.6%和硅钡孕育剂0.7%对灰铸铁进行复合孕育,明显增加共晶团数量至441个/cm^2,可以获得细小A型石墨,显著提高灰铸铁的力学性能σb至282MPa。  相似文献   

11.
应用Rietveld模拟计算和实验X射线衍射分析合金元素V、Nb和Mo在ZrCr2 Laves相金属间化合物中的晶格占位,研究合金化对ZrCr2 Laves相力学性能的影响。研究结果表明:合金元素V和Mo占据ZrCr2 Laves相金属间化合物中Cr原子的晶格位置,而Nb则占据Zr原子的晶格;添加合金元素V、Nb和Mo使ZrCr2 Laves相化合物硬度及脆性度降低,断裂韧度显著提高,即合金化对ZrCr2 Laves相起软化作用。初步探讨合金元素对ZrCr2 Laves相力学性能的影响机制。  相似文献   

12.
《Intermetallics》1999,7(6):731-739
Mechanically alloyed and blended Nb–Al–N powders were sintered by the spark plasma sintering process, and their microstructure and mechanical properties were investigated. All of the Nb–Al–N compacts consisted of phases in the Nb–Al system in which the Nb2N phase was dispersed. The microstructure of blended powder compacts was much coarser than that of mechanically alloyed powder compacts. The compacts obtained by sintering powder produced by crushing blended powder compacts have finer microstructure, higher hardness, and higher fracture toughness than blended powder compacts. The strength of Nb–Al–N compacts increases with increasing the fraction of AlN added to the Nb powder, while their fracture toughness at room temperature decreases. As for the Nb–Al–Mo and Nb–Al–W system, the effect of solid-solution hardening of W was larger than that of Mo, and Nb–15Al–40Mo compact has the highest strength at room temperature and 1273 K among Nb–15Al–xMo compacts.  相似文献   

13.
A series of non-equiatomic Mo–Nb–Hf–Zr–Ti alloys are synthesized to investigate the effects of the concentration variation of each composing elements on the microstructure and mechanical properties. It is found that all studied alloys form single body-centered-cubic (BCC) phase only with the variation of the lattice parameter, which indicates that the concentration variation of each composing elements has no effect on the phase constitutes. All studied alloys exhibit typically dendritic and interdendritic structure while the concentration variation of each composing elements has different effects on the microsegregation. The concentration variation of Zr leads to the most serious microsegregation. Elements with a higher melting point such as Mo and Nb solidify preferentially and thus are enriched in the dendrites. Both the increase and decrease of the concentration of each composing element reduce the hardness and strength of non-equiatomic Mo–Nb–Hf–Zr–Ti alloys compared with the equiatomic MoNbHfZrTi alloy.  相似文献   

14.
IntroductionIMI829titaniumaloyisakindofhightemperaturenearαaloy.Itsservicetemperatureisupto580℃.IthasbeenusedinRB211525E4en...  相似文献   

15.
To investigate the effect of tungsten addition on mechanical properties, we prepared refractory (62−x)Nb−18Si−10Mo−10Ti−xW (x=0, 5, 10 and 15 mol.%)in-situ composites by the conventional arc-casting technique, and then explored the microstructure, hardness and elastic modulus at ambient temperature and tensile properties at 1670 K. The microstructure consists of relatively fine (Nb, Mo, W, Ti)5Si3 silicide and a Nb solid solution matrix, and the fine eutectic microstructure becomes predominant at a Si content of around 18 mol.%. The hardness of (Nb, Mo, W, Ti)5Si3 silicide in a W-free sample is 1680 GPa, and goes up to 1980 GPa in a W 15 mol.% sample. The hardness, however, of Nb solid solution does not exhibit a remarkable difference when the nominal W content is increased. The elastic modulus shows a similar tendency to the hardness. The optimum tensile properties of the composites investigated are achieved at W 5 mol.% sample, which exhibits a relatively good ultimate strength of 230 MPa and an excellent balance of yield strength of 215 MPa, and an elongation of 3.7%. The SEM fractography generally indicates a ductile fracture in the W-free sample, and a cleavage rupture in W-impregnated ones.  相似文献   

16.
A series of Ni–Cr–Fe welding wires with different Nb and Mo contents were designed to investigate the effect of Nb and Mo on the microstructure, mechanical properties and the ductility-dip cracking susceptibility of the weld metals by optical microscopy(OM), scanning electron microscopy, X-ray diffraction as well as the tensile and impact tests. Results showed that large Laves phases formed and distributed along the interdendritic regions with high Nb or Mo addition. The Cr-carbide(M_(23)C_6) was suppressed to precipitate at the grain boundaries with high Nb addition. Tensile testing indicates that the ultimate strength of weld metals increases with Nb or Mo addition. However, the voids formed easily around the large Laves phases in the interdendritic area during tensile testing for the weld metal with high Mo content. It is found that the tensile fractographs of high Mo weld metals show a typical feature of interdendritic fracture. The high Nb or Mo addition, which leads to the formation of large Laves phases, exposes a great weakening effect on the impact toughness of weld metals. In addition, the ductility-dip cracking was not found by OM in the selected cross sections of weld metals with different Nb additions. High Nb addition can eliminate the ductility-dip cracking from the Ni–Cr–Fe weld metals effectively.  相似文献   

17.
郑健  邓想涛  王昭东  罗登 《轧钢》2018,35(2):12-14
对含Nb和不含Nb两种成分低合金耐磨钢板NM400热轧和热处理态的组织性能进行了研究,并对比分析了微量Nb元素对其组织性能的影响规律。研究结果表明:在低合金耐磨钢中添加质量分数为0.02%的Nb,在相同的控轧控冷和离线热处理工艺条件下,钢板强度和硬度增加,低温冲击韧性提高。在相同的工艺条件下,微量Nb元素的添加对钢板组织中原始奥氏体晶粒的细化是其低温韧性提高和硬度增加的主要原因。  相似文献   

18.
采用铜模吸铸法制备不同直径的Fe71Mo5-xNbxP12C10B2(x=1~5)合金棒。利用X射线衍射、差热分析和压缩测试等手段分别研究Nb替换Mo对Fe71Mo5P12C10B2合金的结构、热稳定性及室温力学性能的作用。结果表明:随着Nb含量的增加,合金的玻璃形成能力有所降低,而断裂强度逐步增加;Fe71Mo2Nb3P12C10B2金属玻璃的断裂强度高达4.0GPa,且具有1%的室温压缩塑性。Fe-P-C基块体金属玻璃断裂的强度提高的原因主要是由于Nb替换Mo有利于形成似网格状结构且增强原子间结合力。  相似文献   

19.
采用OM、SEM、TEM、拉伸试验和冲击试验等,研究了600 ℃回火不同时间对690 MPa级高强抗震耐火钢板的力学性能、微观组织及析出行为的影响。结果表明,不同回火时间对耐火钢板的力学性能和微观组织有重要影响。耐火钢板经过600 ℃回火后强度稍有降低,但伸长率增大,屈强比降低,综合力学性能提高,低温冲击吸收能量随回火时间的延长而降低。最优回火保温时间为15 min,此时试验钢板的屈服强度为976 MPa、硬度为396 HV,-40 ℃冲击吸收能量为164 J,其组织由贝氏体+铁素体+少量马氏体构成,在马氏体和铁素体中均存在位错和细小析出相,析出相为富Nb的Nb、Ti复合碳化物,发挥沉淀强化作用;当保温时间延长至60 min后,析出大量细小Nb、Ti和Mo复合碳化物,但此时的沉淀强化作用不能弥补铁素体造成的强度损失,所以在相同温度回火过程中,随着回火时间的延长,抗拉强度和硬度下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号