首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
实验室研究了合金成分及卷取工艺对X65抗HIC管线钢的显微组织、力学性能、抗HIC性能的影响规律。结果表明,添加Cu、Ni、Mo合金或降低卷取温度均有利于改善钢的强韧性及抗HIC性能。对于C-Si-Mn基础成分,在450~550℃范围内卷取时,随着卷取温度的下降,珠光体含量减少而贝氏体含量逐渐增加,力学性能变化不明显,但抗HIC性能显著提升;在同样的工艺条件下,Cu、Ni尤其是Mo合金的添加,抑制了珠光体转变,贝氏体的比例显著增加且晶粒更加细小,因此,强度、韧性及抗HIC性能均呈上升趋势。  相似文献   

2.
利用环境扫描电子显微镜对X80管线钢(/%:0.043C、0.25Si、1.86Mn、0.085Nb、0.001 Ti、0.028Al、0.002 7N)的显微组织进行了观察,并借助于X射线衍射仪和电子背散射衍射技术,分析了管线钢组织与晶粒织构取向的特点。结果表明,{112}〈110〉、{110}〈110〉取向增加、小角度晶界比率提高,使管线钢的落锤撕裂面积增大,韧性提高;降低终轧温度、提高冷却速度,能够得到较多的针状铁素体,对落锤撕裂性能是有利的。  相似文献   

3.
系统研究了控轧及控轧控冷工艺对9.5mm薄规格X65管线钢组织和性能的影响。结果表明:控轧控冷生产的钢的强度、韧性及微观组织整体优于控轧型X65管线钢。对于控轧工艺,降低轧制温度,晶粒细化,强度提高至550MPa,屈强比有增大趋势(0.90~0.95),但韧性较差;轧后配合水冷,通过优化冷却温度和精轧开轧厚度,组织明显细化,混晶程度和带状组织均改善,强度提高至580~620MPa,-20℃冲击韧性稳定在130~150J,屈强比稳定在0.83~0.9。无论是控轧工艺还是控轧控冷工艺,仅通过降低轧制温度、冷却温度对钢的强度提高幅度有限。  相似文献   

4.
X65管线钢的模拟炉卷轧制工艺研究与组织性能   总被引:3,自引:1,他引:3  
江海涛  康永林  梁正伟 《钢铁》2006,41(4):51-55
对X65管线钢的炉卷轧制工艺进行了实验室模拟研究,并采用光学、电子显微技术和力学分析等方法研究了X65管线钢的微观组织与性能.研究结果表明,通过实验室模拟炉卷轧机的控轧控冷工艺,获到了组织性能优异的X65针状铁素体管线钢.利用相变强化和控轧控冷形成有利的针状铁素体组织,合理控制夹杂物和碳氮析出物的大小、形态和分布是管线钢组织性能控制的关键所在.  相似文献   

5.
X80热连轧管线钢的成分、工艺对组织及性能的影响   总被引:1,自引:1,他引:1  
对三种不同成分设计的Mn-Mo-Nb+钢的精轧轧程、轧制温度以及C、Mo含量对热轧板卷屈服强度和DWTT撕裂面积等性能的影响进行了研究,所得到的结论对提高强度,细化奥氏体晶粒,避免混晶具有指导性。采用含Mo低碳、高Nb设计,控制精轧轧程,可以获得具有优良强度和韧性的X80热连轧管线钢产品。  相似文献   

6.
应用Gleeble-3500热/力模拟试验机研究了轧后冷速(20—0.5℃/s)、卷取温度(630—500℃)、精轧初始温度(1000—900℃)、末道次精轧温度(860~750℃)对X65管线钢(0.08%C、1.38%Mn、0.032%Nb、0.041%V、50×10^-6N)显微组织的影响。结果表明,增加轧后冷却速度、减小950℃左右的压下量,降低终轧和卷取温度可细化板材组织。提出150mm×1700mm板坯轧成7.1mm成品板的轧制温度为:1150—1200℃加热,≤1130℃粗轧至35mm,950—1020℃精轧,≤830℃终轧,≤580℃卷取,其产品力学性能满足标准要求。  相似文献   

7.
对21 mm X70管线钢的控轧控冷工艺进行了试验分析,表明合理控制精轧温度、终轧温度和终冷温度可以得到组织细化和性能良好的针状铁素体管线钢板.  相似文献   

8.
研究了不同的轧制工艺和冷却工艺对厚规格管线钢X65的综合性能和组织的影响。结果表明:较高的Ⅱ阶段开轧温度和较快的冷却速度可以使X65得到以针状铁素体和粒状贝氏体为主的组织,钢板的强度和落锤等性能可以满足要求。  相似文献   

9.
为提高抗大变形管线钢X80的力学性能,在鞍钢5500宽厚板生产线上对其轧制工艺进行了研究。结果表明,提高板坯加热温度及保温时间可改善产品抗拉强度;适当调整弛豫时间,保证钢板入水温度及优化轧制力、轧制道次,可有效控制钢板显微组织,提高产品的均匀延伸率。  相似文献   

10.
通过合理的组织、成分设计,对高强度管线钢控轧控冷工艺参数中加热温度、终轧温度、卷取温度、冷却速度进行控制,得到最佳工艺参数;利用金相显微镜对轧制试样进行金相组织分析,并进行力学性能检测。结果表明,当加热温度为(1 200±20)℃、终轧温度为(850±10)℃、卷取温度为[520(目标值)±14]℃、冷却速度为35℃/s时,钢板可获得铁素体+珠光体、F/P的最佳组织构成与最优的综合力学性能。  相似文献   

11.
从深海X65MO管线钢的冶炼工艺研究入手,阐述了深海X65MO管线钢成分设计原理及冶炼过程工艺,并对连铸坯进行金相显微分析,保证了产品良好的强韧性性能匹配要求;对铸坯的夹杂物进行分析,保证了钢水纯净度对钢板性能影响,满足了深海X65MO管线用钢的坯料使用要求.  相似文献   

12.
为提高抗大变形管线钢X80的力学性能,在鞍钢5500宽厚板生产线上对其轧制工艺进行了研究。结果表明,提高板坯加热温度及保温时间可改善产品抗拉强度;适当调整弛豫时间,保证钢板入水温度及优化轧制力、轧制道次,可有效控制钢板显微组织,提高产品的均匀延伸率。  相似文献   

13.
Nb-Ti微合金化X65管线钢(/%:0.07C、1.60Mn、0.35Mo)的生产工艺流程为130 t顶底复吹转炉-钢包吹氩-LF-RH-250 mm×1500 mm板坯连铸-连轧至30 mm板-控冷工艺。研究了第Ⅱ阶段开轧(890~940℃)轧后冷却温度(780~850℃)和冷却速度(8~20℃/s)对X65钢厚板拉伸、落锤性能和组织的影响。结果表明,Ⅱ阶段开轧温度为940℃,轧后冷却速度为20℃/s可以使X65钢厚板得到以针状铁素体和粒状贝氏体为主的组织,钢板抗拉强度665~695 MPa,屈服强度495~520 MPa,落锤纤维组织率约为92%,满足标准要求。  相似文献   

14.
基于CSP生产工艺,在X65管线钢成分基础上加入适量Ce元素,利用Gleeble 1500D进行热模拟轧制实验。对比分析X65和X65RE各道次变形后显微组织的差异、Ce元素对显微组织的影响。实验结果表明,添加Ce元素后,能抑制珠光体相的转变,细化了钢的组织晶粒。  相似文献   

15.
X70管线钢的轧制工艺和显微组织及低温韧性   总被引:1,自引:0,他引:1  
刘守显 《武钢技术》2006,44(1):57-62
管线钢现在已广泛应用在高压条件下的石油和天然气的长途运输,这就要求管线钢首先具有高强度和高韧性,同时管道的直径和厚度趋于增大,这都有利于降低成本。自然资源一般位于自然条件恶劣的地区,如石油出产地西伯利亚和阿拉斯加就地处严寒地区,阻碍了石油产业的发展。这就要求管线钢具有良好的低温韧性,以提高油气资源在低温环境下的运输效率。  相似文献   

16.
通过管线钢X65Mo轧后尽快水冷和弛豫冷却两种工艺对比,发现快速水冷工艺的钢板屈强比较高,落锤性能较好,而弛豫冷却工艺的钢板的屈强比较低,落锤性能稍差。为以后生产管线钢X65Mo落锤性能的提升、屈强比的降低总结了经验。  相似文献   

17.
研究了终轧温度和在线冷却方式对X70级耐酸管线钢力学性能和抗HIC性能的影响。结果显示:层流冷却相对于在线空冷,钢板的强韧性有明显提高,两种工艺下钢板的硬度指标相当;在相同冷却工艺下,提高终轧温度有利于屈服强度和抗拉强度的提高;抗HIC性能只与铸坯质量有关,与轧制工艺、组织状态、晶粒度大小无关。根据研究的结果进行了X70级别耐酸管线钢的工业试制,所得X70管线钢在强韧性满足标准要求的前提下,保持了良好的抗HIC性能。  相似文献   

18.
围绕本钢供兰-成-渝石油管理送管道用钢技术条件,对前后两套生产工艺进行了对比,摸索出一套适合本钢热轧的最佳工艺,同时提出了二期改造后工艺改进方向。  相似文献   

19.
研究了X65管线钢不同级别带状组织对焊接接头的显微组织和力学性能的影响.试验结果表明,焊接接头焊缝处有典型的焊缝组织贝氏体,热影响区含有少量的魏氏体、珠光体、晶内成核铁素体和多边形铁素体组织,焊接接头的拉伸断裂部位在焊缝处;带状组织越严重,焊接后的钢板强度和韧性均变差,因此在X65管线钢生产中要严格控制带状组织的形成.  相似文献   

20.
通过实验室φ350 mm 4辊轧机对V-Nb-Wi微合金化X100管线钢(%:0.057C、1.84Mn、0.25Mo)进行控轧控冷试验。结果表明,在1 100℃始轧,800~900℃终轧,100~400℃终冷温度下,X100钢的组织为针状铁素体+粒状贝氏体-下贝氏体。降低终轧温度可细化组织,提高钢的强度;降低终冷温度可提高钢的强度,但使钢的韧性降低。X100管线钢的最佳轧制工艺为终轧温度850℃,终冷温度200℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号