首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports on the effects of dimple and metallic coating of the Cu-alloy lead frame on interfacial adhesion with an epoxy-molding compound. Round dimples of varying number are introduced on one side of the lead frame by chemical etching. The plating materials studied include bare-Cu alloy and microetched Cu, Ag, Ni, Pd/Ni, and Au/Ni coatings. The surface characteristics, such as wettability, surface roughness, and element compositions, were evaluated based on several characterization tools, which, in turn, are correlated with adhesion performance. The dimples enhanced the interfacial-bond strengths through improved mechanical interlocking of the molding compound, depending on the type of coating. The improvement was much more significant for the coatings with inherently weak interfacial adhesion (e.g., microetched Cu and Ni coating) than those with inherently strong adhesion characteristics (e.g., Au and Pd coatings). The wettability of the metal surface represented by the surface energy or interfacial energy played a dominant role in the resulting interfacial adhesion. Elemental analysis of the fracture surface indicates that the silicon content had roughly a linear relationship with the interfacial-bond strengths for different coatings. The surface roughness was insensitive to the interfacial-adhesion performance. The silicon content measured from the lead-frame fracture surface was shown to directly correlate to the interfacial-bond strength. Higher silicon content was a reflection of larger surface-area coverage by the molding compound associated with cohesive failure.  相似文献   

2.
The interfacial-adhesion performance between the lead frame and molding compound was studied after temperature cycles and hygrothermal aging, simulating a typical package-assembly process. The hygrothermal aging involved a treatment at 85°C and 85% relative humidity (RH) for 168 h and three cycles of infrared (IR) solder-reflow condition. The interfacial-bond strengths were measured using shear and lead-pull tests. The lead-frame surface finishes studied include a bare Cu, microetched Cu, spot Ag coating, Ni, Pd/Ni, and Au/Ni coatings. Special emphasis was placed on the study of the changes in surface characteristics and the corresponding interfacial adhesion after various manufacturing processes. It was found that moderate thermal cycles enhanced the interfacial adhesion for all coated lead frames, except the Ni coating. Hygrothermal aging was detrimental to the interfacial-bond strength, especially for hydrophilic or polar surfaces, such as bare Cu, Ag, Pd/Ni, and Au/Ni coated lead frames. The introduction of tiny dimples etched on the lead frame was effective in mitigating the reduction in interfacial-bond strength arising from hygrothermal aging. This result confirms the important role of the mechanical-interlocking mechanism provided by dimples in retaining the interfacial adhesion in a humid environment.  相似文献   

3.
The lamination of surface modified printed circuit board (PCB) substrate, FR-4(R), from argon plasma pretreatment and UV-induced graft copolymerization with glycidyl methacrylate (GMA), to copper foil was carried out at elevated temperature and in the presence of an epoxy adhesive. The structure and chemical composition of the graft copolymerized surfaces and interfaces of the glass fiber-reinforced and epoxy-based FR-4 substrates were studied by X-ray photoelectron spectroscopy (XPS). The effects of the plasma pretreatment time, the UV illumination time, as well as the curing temperature, on the adhesion strength between the FR-4 substrate and copper were investigated. The assemblies involving GMA graft copolymerized FR-4, or the FR-4-GMA/epoxy resin/Cu assemblies, exhibited a significantly higher interfacial adhesion strength and reliability, in comparison to those assemblies in which only epoxy adhesive alone was used. The enhanced adhesion in the assemblies involving GMA graft copolymerized substrate arises from the fact that the covalently tethered GMA graft chains on the FR-4 surface can become covalently incorporated into the epoxy resin, resulting in the toughening of the epoxy matrix and increased interaction with copper  相似文献   

4.
Copper lead frame was chosen as an on-board reliability enhancement for the BLP (bottom leaded plastic) package. Adopting the copper lead frame needed a verification process for the package reliability because of its high affinity with oxygen that degrades package reliability. A series of tests were performed to select the best copper material and to determine the adhesion index parameter. The experimental results showed that the adhesion strength between the copper lead frame and EMC (epoxy molding compound) was affected by alloy composition, oxide layer thickness, and cupric/cuprous oxide ratio, Among them, the adhesion index parameter proved to be the cupric/cuprous oxide ratio. When it falls between 0.2-0.3, the highest adhesion strength was obtained regardless of alloy composition and oxide thickness. From the adhesion test results, the Cr-Zr-Cu copper alloy was employed as the lead frame for the 54-pin BLP package. The package reliability and on-board reliability tests including surface mountability, mechanical robustness, and solder joint reliability were carried out to compare the 54-pin BLP package, with Cr-Zr copper alloy and alloy 42 lead frame  相似文献   

5.
铜材料引线框架具有良好的导电导热性能,同时具备良好的机械性能和较低成本,但是由于框架和塑封料之间较差的粘结力在回流焊时容易造成封装体开裂。文章研究了铜框架氧化膜的特性,以及氧化膜对半导体封装的可靠性影响。根据试验,氧化膜会随着时间温度而增加,当氧气含量低于1%时增加缓慢。当氧化膜的厚度超过20nm时,塑封料与氧化铜之间的结合力就会显著下降,同时交界面的分层也会加剧。最后针对氧化膜厚度受控的产品做回流焊测试,确认是否有开裂,结果表明与结合力测试相符。氧化膜的厚度需要低于42.5nm,可以提高在reflow时的抗开裂性能。  相似文献   

6.
Rolled copper foil of 18 μm thickness underwent nodule treatment via electro plating in a solution containing dissolved CuSO4 and NiSO4. The product formed on the surface of the copper foil varied from copper oxides to nickel compounds of the sphere type with increasing current density and plating time. The highest surface roughness and maximum peel strength of 680 gf/cm were obtained with the formation of nickel compounds at a current density of 1.5 A/dm2 and plating time of 30 s. In addition, the fracture location varied according to the plating parameters and occurred at the interface between the polyimide film and adhesive layer at the condition of the maximum adhesion strength.  相似文献   

7.
Oxidation of four typical lead frame copper alloys was investigated. The oxidation rate and adhesion strength of oxide films to copper alloy substrates were studied by measuring the thickness and carrying out peel tests. The results show that, although copper alloys C5191 and C7025 have thinner oxide films, a lower adhesion strength and a higher proportion of CuO were obtained than in the other copper alloys EFTEC64T and C194. The adhesion strength is mainly influenced by the structure of the oxide film of the copper alloys, especially the CuO/Cu2O ratio in the film. The highest adhesion strength is obtained for the copper oxide film with a basic structure of CuO/Cu2O/Cu and a CuO/Cu2O ratio of about 0.1. The segregation of additional elements in the copper alloy plays an important role in the oxide film structure.  相似文献   

8.
Liquid crystal polymer (LCP) has potentially a very wide application as substrate material in electronic packaging applications because of its unique advantages. The work in this paper was performed to realize the metallization of LCP for the purpose of board fabrication, and to study the adhesion between deposited copper and LCP. A homogenous electroless plated copper layer on LCP with 4 to 5 /spl mu/m thickness was achieved, while it increased up to 40 /spl mu/m with the subsequent electroplating. The timescale of etching, deposit ion rate, and pH value were gradually changing during the plating process and the influences on copper layer quality were investigated. The adhesion force of the copper-LCP layer system was measured by a shear-off-method. Scanning electron microscopy (SEM) was used to check the surface morphology after etching and the interface after shearing on both the backside of the copper layer and the LCP side. The relationship between the shear-off adhesion of copper and the time of chemical etching before plating was examined, and the optimal etching time is discussed. Heat treatment after plating was used, and it was shown that this significantly improved the adhesion strength.  相似文献   

9.
铝基板表面氧化铝层分子自组装活化法镀铜   总被引:1,自引:0,他引:1  
采用分子自组装活化法在铝基板表面氧化铝上实施化学镀铜,镀层有很好的剥离强度,通过SEM、EDS和离子色谱对其进行了表征。研究了硅烷化时间与基体表面硅烷修饰量的关系,浸钯时间对基体表面钯含量的影响,硅烷化时间对镀层剥离强度的影响。通过正交试验得到最佳工艺条件:硅烷化处理用3-氨基丙基三乙氧基硅烷,质量分数为0.4%,硅烷化时间12h、温度50℃、浸钯溶液活化时间30min、30℃;得到的镀铜层剥离强度为1.00。  相似文献   

10.
刘会霞  王凯  李品  张成  高阳阳  严长  王霄 《中国激光》2012,39(9):902008-47
激光透射连接具有生物相容性的异种材料在生物医学植入体及其封装中具有良好的应用前景。利用半导体激光器对镀钛玻璃与聚对苯二甲酸乙二酯(PET)进行激光透射连接试验,其中玻璃上镀钛薄膜是通过射频磁控溅射方法完成的镀膜。通过单因素工艺研究了主要工艺参数激光功率、扫描速度和镀钛薄膜的厚度对连接强度的影响,并探讨了玻璃基片的表面粗糙度对镀钛薄膜粗糙度以及其连接强度的影响。通过搭接剪切试验得到镀钛玻璃与PET之间的连接强度,采用真彩共聚焦材料显微镜对拉伸失效后的试样表面进行观测和失效分析,使用X射线光电子能谱(XPS)检测激光透射连接过程中镀钛玻璃与PET之间化学键的形成信息。结果表明:主要工艺参数激光功率、扫描速度对连接强度有着重要影响,增加玻璃基片的粗糙度和镀钛薄膜的厚度可以提高其连接强度,为激光透射连接镀钛玻璃与聚合物提供了参考。  相似文献   

11.
张国祥 《激光技术》2014,38(4):538-541
为了揭示激光淬火预处理钢基体细化镀铬层界面晶粒的电镀机理,采用理论和试验相结合的方法进行了理论分析和试验验证。用化学腐蚀法制备了铬层/激光离散预处理基体界面的两侧(铬层界面与基体界面),利用扫描电镜研究了铬层界面晶粒形貌,利用激光粗糙度仪测量了基体界面粗糙度;借助电镀理论构建了以过电位为中间变量的铬层界面晶粒尺寸和基体界面粗糙度关系分析模型;取得了粗糙度与晶粒尺寸呈正比的试验结果和粗糙度与晶粒尺寸呈正比的理论关系,得到了淬火预处理钢基体细化镀铬层界面晶粒的电镀机理。结果表明,激光淬火预处理钢基体得到的较小粗糙度可以提高过电位,过电位的提高减小了铬层界面晶粒尺寸。这一结果对进一步解释激光淬火预处理可以提高基体/铬层界面结合强度是有帮助的。  相似文献   

12.
The effect of oxygen plasma treatment on the adhesion between nonconductive film (NCF) and oxidized Si was investigated. Oxidized Si wafers were treated with oxygen plasma for 5 min and then rinsed in de-ionized water (DIW). The water contact angle was measured by means of the sessile drop technique and the surface roughness was measured by means of atomic force microscopy. The adhesion of the NCF to the oxidized Si wafer was evaluated by means of a single-lap shear test after bonding at 150°C for 5 s. Oxygen plasma treatment decreased the water contact angle. The roughness of the oxidized Si wafer decreased when oxygen plasma treatment was applied alone, but was increased when both oxygen plasma treatment and DIW rinse were applied. Similarly, the shear strength decreased when oxygen plasma treatment was applied alone, but the adhesion of NCF increased when both oxygen plasma treatment and DIW rinse were applied. The increased surface roughness of the oxidized Si wafer played an important role in increasing the adhesion between the NCF and the oxidized Si wafer. The shear strength further increased after post-heat treatment at 170°C for 1 hr or at 280°C for 15 s. Low shear strength observed before post-heat treatment was ascribed to incomplete NCF curing. Differences observed in the adhesion strength between two types of NCF were attributed to differences in their curing degrees and their degrees of surface coverage of the oxidized Si substrates.  相似文献   

13.
In this study, the effect of a Ni-Cr layer on the adhesion strength of flexible copper clad laminate (FCCL) was evaluated after thermal treatment. The changes in the chemical composition, morphology, and adhesion properties were characterized by scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and 90 deg peel test. The results showed that both the peel strength and thermal resistance of the FCCL increased with increasing Cr ratio. The thermal treatment of the FCCL increased the proportion of C-N bonds and reduced that of the C-O and carbonyl (C=O) bonds in the polyimide. The roughness of the fracture surface decreased with increasing thermal treatment temperature and holding time. The chemical function and roughness of the fracture surface were affected by the Ni-to-Cr ratio.  相似文献   

14.
It was found that trace Ag on surface has great effect on the oxidation failure of Cu-base lead frame. Trace Ag on the surface increases its peeling resistance in dry condition, while decreases that under hygrothermal aging treatment. The oxide thickness, morphology and compositions were examined to understand the key factor of peeling of oxide film. It becomes evident that Ag has ability to block the diffusion of copper atoms, and so hold back the oxidation of copper. But adhesive strength between copper and oxide layer has little relation with oxide thickness but more important influence comes from internal compressive stress which has great relations with initial structure of the copper lead frame.  相似文献   

15.
Copper–epoxy molding compound (Cu–EMC) interface is known to be one of the weakest interfaces in an electronic package exhibiting delamination during reliability test. Thiol compound which bonds readily and forms a self-assembly monolayer (SAM) with copper is proposed to improve interfacial adhesion between copper and EMC. Conventional adhesion evaluation involves force measurement in macro-scale. However, inconclusive or even contradictive results are common in those tests because of uncontrollable surface conditions such as contamination and, in particular, roughness. To eliminate the roughness effect and reflect the true chemical bonding condition, an Si wafer was used as a substrate in the experiments. This study involves the use of an atomic force microscope (AFM) in characterizing the nanoscale adhesion force in a Cu–SAM–EMC system. Findings were used as the criteria in selecting a SAM candidate. A thiol compound having a carbonyl group is shown to be the best adhesion promoter from the measurement. The nanoscale AFM results are shown to be consistent with the result of macroscopic shear tests. It has been demonstrated, with SAM treatment on a cleaned copper surface, that the fracture force between Cu–EMC samples is improved from 119 to 195N.  相似文献   

16.
The adhesion strength of A lead-free solder hot-dipped on copper substrate   总被引:1,自引:0,他引:1  
Eutectic Sn-Zn-Al solder alloy was used [composition: 91Sn-9(5Al-Zn)] to investigate the effects of dipping parameters such as the temperature, rate and time dipping on the adhesion strength between solder and substrate using dimethylammonium chloride (DMAHCl) flux. The optimum conditions for the highest adhesion strength (about 8 MPa) were determined as dipping at 350°C, and a rate of 10.8∼11.8 mm/s for 5∼7.5 min. A poor solder coating was obtained as dipped at 250°C. Some defects by non-wetting were found as dipped at a slow rate (slower than 8.2 mm/s). Quite different from the most tin-based solders for copper substrate, γ-Cu5Zn8 intermetallic compound particles were found by x-ray diffraction (XRD) analysis at the interface of solder and substrate as dipped at 300°C after pull-off test by etching out the unreacted solder layer. The morphology of the intermetallic compound formed was observed by scanning electron microscopy (SEM). The elements of Al (near Cu), Zn (near Sn) are enriched at the interface of solder and copper substrate as determined by the line scanning and mapping analysis.  相似文献   

17.
In order to achieve copper wafer bonding with good quality, surface conditions of copper films are important factors. In this work, the effects of surface conditions, such as surface roughness and oxide formation on the bond strength, were investigated under different bonding conditions. Prior to bonding, copper film surfaces were kept in the atmosphere for less than 1 min, 3 days, and 7 days, respectively, to form different thicknesses of oxide on the surface. Some copper wafers were cleaned using HCl before bonding in order to remove the surface oxide. Surface roughness of copper films with and without HCl cleaning was examined. Since surface cleaning before bonding removes oxides but creates surface roughness, it is important to study the corresponding bond strength under different bonding conditions. These results offer the required information for the process design of copper wafer bonding in three-dimensional integration applications.  相似文献   

18.
The reliability of IGBT modules was investigated with respect to the metallized ceramic (substrate) and the solder layer between the substrate and copper baseplate. Thermal cycles were performed between −55°C and +150°C on substrates based on different technologies and from various manufacturers. An incipient delamination of the metallization could be predicted from the mechanical resonance frequency. The warping of the substrates after cycling due to crack propagation and the adhesion of the metallization were determined. Thermal and active-power cycles were performed on 1200 A / 3.3 kV IGBT power modules to investigate the reliability of the solder joint between substrate and baseplate.  相似文献   

19.
氧化铝陶瓷基板化学镀铜金属化及镀层结构   总被引:2,自引:0,他引:2  
通过化学镀铜在氧化铝陶瓷基板表面实现了金属化,采用SEM研究了镀铜层表面微观形貌以及热处理的影响,检测分析了金属化镀层附着力。结果表明:通过控制镀液中铜离子浓度以及铜沉积速率,在基板表面可形成均匀致密的铜金属化层;热处理后进一步提高镀层致密化和导电性,其方阻由3.6 mΩ/□降为2.3 mΩ/□。划痕法测试表明镀铜层与氧化铝陶瓷基板结合紧密无起翘,可以满足敷铜基板的要求。  相似文献   

20.
RF shielding effectiveness and light transmittance of acopper or silver film coating on a plastic substrate is investigated. The dependence of the RF shielding effectiveness upon the surface resistance or thickness of a copper or silver film coating on a plastic substrate is calculated numerically by means of multireflection transmission-line theory over the frequency range of 100 MHz to 30 GHz. The light transmansmittance is determined by using the optical properties of the copper or silver film and plastic substrate. An optimum condition between the RF shielding effectiveness and the light transmittance is established for the copper or silver film coating on a plastic substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号