首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Well-crystallized hexagonal hematite (α-Fe2O3) platelets were synthesized by hydrothermal process,using a highly concentrated ferric hydroxide as precursor.The precursor was prepared by adding ammonia to the ferric sulfate solution which was obtained by leaching pyrite cinders with sulfuric acid.Structure and morphology of the synthesized products were investigated by X-ray diffraction,scanning electron microscope,transmission electron microscope and selected area electron diffraction.The results reveal tha...  相似文献   

2.
1 Introduction Microwave absorbing materials (MAM) refer to a kind of materials that can be used to absorb the emitted electromagnetic (EM) energy and to minimize the wave reflected in the direction of an energy radar receiver. When the EM wave incidents into MAM, it is readily absorbed, attenuated, and changed into heat or other energy. MAM are functional materials that possess special performance for absorbing EM wave. Along with the advancement in radar and microwave technologies, MA…  相似文献   

3.
Zirconia-supported CuO (CuO/ZrO2) composite photocatalysts were successfully synthesized via citric acid-assisted sol-gel technique. For comparison, CuO/ZrO2 materials were also prepared by solid state reaction and co-precipitation method. The as-prepared powders were characterized by X-ray diffractometry (XRD), transmission electron microscopy (TEM), and thermogravimetric-differential thermal analysis (TG-DTA). The photocatalytic activity of CuO/ZrO2 catalyst was investigated based on the H2 evolution from oxalic acid solution under simulated sunlight irradiation. The effects of molar ratio of CuO to ZrO2, preparation method, phase change with the calcination temperature and the durability on the photocatalytic activity of the photocatalyst were investigated in detail. It is found that the optimal activity of photocatalytic H2 evolution (2.41 mmol·h−1μ−1) can be obtained when CuO/ZrO2 composite photocatalyst is synthesized by sol-gel technique and the mole ratio of CuO to ZrO2 is 40%. The activity of copper oxide supported on monoclinic ZrO2 calcined at higher temperature is much higher than that on tetragonal ZrO2 calcined at lower temperature, and the best calcination temperature is 900 °C.  相似文献   

4.
The structural evolution and stability of Fe100-xNix(x=10, 20, 35, 50) alloys prepared by mechanical alloying were investigated through X-ray diffraction analysis and transmission electron microscopy. The intrinsic conditions of preparation determining phase stability in nanocrystalline were clarified. After being milled for 120 h, the powders of Fe90Ni10 and Fe80Ni20 consist of a single α(bcc) phase, Fe30Ni30 powders are a single γ(fcc), and for Fe65Ni35 powders there is co-existence of α and γ phases. The as-milled Fe80Ni20 powders annealed at 680 ℃ exhibits the stability of high-temperature γ phase at room temperature, which is consistent with the theoretical prediction.  相似文献   

5.
Cerium-substituted yttrium iron garnet( CexY3-xFe5O12, Ce : YIG ) was prepared via coprecipitation. The structure, morphology, valence state and constituent of Ce ions were investigated respectively. X-ray powder diffraction( XRD ) analysis shows that Ce : YIG was of single cubic YIG phase. The result of X-ray photoelectron spectroscopy( XPS ) indicates the Ce ions in Ce : YIG were in the state of trivalence. Scanning electron microscope ( SEM ) demonstrates the conglobatian of Ce : YIG particles about 0.2μm scale. The magnetic properties were studied by a vibrating sample magnetometer (VSM) and the result exhibits that substitution of Ce 3 changes the magnetic parameters of YIG. The effects of doping content of Ce ions and synthesis temperature on valence control were discussed in detail.  相似文献   

6.
Cd(S1-xSex) pigments (red to yellow) were synthesized by precipitate-hydrothermal method. The structure, morphology and hue of the powder were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX) and CIE chromaticity. The optimum synthesis conditions were obtained and reaction mechanism was further analyzed as well. The results show that molar ratio of S to Se, pH value and hydrothermal reaction conditions have great effects on the hues of the pigments. Pigments with vivid hues are obtained under the conditions that pH value is about 13.0, hydrothermal reaction condition is at 140 ℃ for 4 h or at 160 ℃ for 6 h. The reaction mechanism is that Se^2- of Cd(S1-xSex) substitutes S^2- of CdS and then forms a continuous solid solution.  相似文献   

7.
In order to obtain a new precursor for LiFePO4, Fe2P2O7 with high purity was prepared through solid phase reaction at 650 ℃ using starting materials of FeC2O4 and NH4H2PO4 in an argon atmosphere. Using the as-prepared Fe2P2O7, Li2CO3 and glucose as raw materials, pure LiFePO4 and LiFePO4/C composite materials were respectively synthesized by solid state reaction at 700 ℃ in an argon atmosphere. X-ray diffractometry and scanning electron microscopy(SEM) were employed to characterize the as-prepared Fe2P2O7, LiFePO4 and LiFePO4/C. The as-prepared Fe2P2O7 crystallizes in the Cl space group and belongs to β-Fe2P2O7 for crystal phase. The particle size distribution of Fe2P2O7 observed by SEM is 0.4-3.0 μm. During the Li^+ ion chemical intercalation, radical P2O7^4- is disrupted into two PO4^3- ions in the presence of O^2-, thus providing a feasible technique to dispose this poor dissolvable pyrophosphate. LiFePO4/C composite exhibits initial charge and discharge capacities of 154 and 132 mA·h/g, respectively.  相似文献   

8.
Through orthogonal experiment, a new type of LiClO4-LiNO3-LiBr eutectic salt with optimum mole ratio of n(LiClO4):n(LiNO3):n(LiBr) = 1.6:3.8:1.0 was prepared. The poly(lithium acrylate-acrylonitrile)/LiClO4-LiNO3-LiBr solid polymer electrolytes were prepared with poly (lithium acrylate-acrylonitrile) and LiClO4-LiNO3-LiBr eutectic salts. The effect of LiClO4-LiNO3-LiBr eutectic salts content on the conductivity of solid polymer electrolytes was studied by alternating current impedance method, and the structures of eutectic salts and solid polymer electrolytes were characterized by differential thermal analysis, infrared spectroscopy and X-ray diffractometry. The results show that the room temperature conductivity of LiClO4-LiNO3-LiBr eutectic salts reaches 3.11×10−4 S · cm−1. The poly (lithium acrylate-acrylonitrile)/LiClO4-LiNO3-LiBr solid polymer electrolytes possess the highest room temperature conductivity at 70% LiClO4-LiNO3-LiBr eutectic salts content, and exhibit lower glass transition temperature of 75 °C compared with that of poly(lithium acrylate-acrylonitrile) of 105 °C. A complex may be formed in the solid polymer electrolytes from the differential thermal analysis and infrared spectroscopy analysis. X-ray diffraction results show that the poly(lithium acrylate-acrylonitrile) can suppress the crystallization of eutectic salts in this system.  相似文献   

9.
Preparation of ITO nano-powders by hydrothermal-calcining process   总被引:4,自引:0,他引:4  
1 INTRODUCTIONSn-doped In2O3(ITO) is one kind of n-typesemiconductor material[1].It has excellent electro-optical properties , such as electrical conductivityand high transparency under visible light[2],andiswidely used in electronic , transparent electrode ,solar cells and electro-irradiance , especially inscreen display[3 ,4].Recently nearly half of the met-al indium has been used to prepare ITO materialsin the developed countries[5], such as Japan, A-merica ,France and so on.So the…  相似文献   

10.
Lithium iron phosphate (LiFePO4) was synthesized from LiOH, FeSO4 and H3PO4 by a hydrothermal process at 180°C. The samples were characterized by X-ray diffraction, scanning electron microscopy and chemical analysis. Electrochemical performance of the samples was tested in terms of charge-discharge capacity and cycling behavior. The results indicated that Fe(III) impurity had obviously effect on the electrochemical properties of LiFePO4, and the formation of Fe3+ was caused by the oxidation of Fe2+ in the dissolving and feeding processes accompanying the increase of pH value. It was found that the precipitation separation was effective in decreasing the content of Fe3+ in the solution of FeSO4 and the sealed feeding was useful in preventing the conversion of Fe2+ to Fe3+. When the content of Fe3+ < 0.5 wt%, the hydrothermally synthesized LiFePO4 calcined at 750°C with sucrose as carbon source exhibited an initial discharge capacity of 154.9 mAh·g−1 at the rate of 0.1 C (1 C = 150 mA·g−1) and the cycling retention rate could reach 98% after 50 cycles at room temperature.  相似文献   

11.
Becausepermanentbariumferritematerialpossessesrelativelyhighsaturationmagnetization ,greatcoerciveforceandhighmagneticanisotropyfieldaswellasexcellentchemicalstabilityandcorrosionresistance ,ithasbeenwidelyusedastraditionalpermanentmagnets,high densitym…  相似文献   

12.
Preparation of AgSnO2 composite powders by hydrothermal process   总被引:2,自引:0,他引:2  
Silver-tin oxide powders were synthesized by the hydrothermal method with Ag(NH3)2^+ solution and Na2SnO3 solution as raw materials and Na2SO3 as reductant. The precipitation conditions of Na2SnO3 solution and the reduction conditions of Ag(NH3)2^+ were also investigated. The powders prepared were characterized by differential thermal analysis (DTA), X-ray diffraction analysis (XRD), scanning electron microscope (SEM) and energy spectrum analysis, The results show that pH value of the solution is a key parameter in the formation of Sn(OH)4 precipitate and the reduction reaction of Ag(NH3)2^+ can release H^+ ions, which results in synchronous precipitation of Sn(OH)6^2- as Sn(OH)4. The reduction of Ag(NH3)2^+ and precipitation of Na2SnO3 occur simultaneously and the coprecipitation of silver and tin oxide is reached by the hydrothermal method. The silver-tin oxide composite powders have mainly flake shape of about 0.3 μm in thickness and there exists homogeneous distribution of tin oxide and silver in the powder synthesized.  相似文献   

13.
Hydrothermal preparation and crystal habit of X-zeolite powder   总被引:1,自引:0,他引:1  
The preparation of X-zeolite powder was investigatedin hydrothermal system, the crystal growth process of X-zeolite in hydrothermal condition was characterized by means of X-ray diffraction, scanning electron microscope and infrared ray. The results show that X-zeolite powder with uniform granularity and intact crystal shape can be obtained in hydrothermal system of acid-treated stellerite-NaOH-NaAl(OH)4-H2O; the crystallite size is in the range of 2 - 3μm. The best reaction time of hydrothermal preparation is 6 h. The formation phases of X-zeolite crystal are as follows: dissolution of feedstocks → formation of [SiO4]4- and [AlO4]5- tetrahedron, many-membered ring,β cage → formation of crystal nucleus and nano-particle → aggregation growth of nano-particle → coalescence growth of crystallite. The crystal habits of X-zeolite are intimately related with crystallization orientation ofβ cage in crystal and with its coupling stability on every crystal face family.  相似文献   

14.
The dried gel of SrFe12O19, prepared by citrate approach, was investigated by means of infrared spectroscopy ( IR ), thermogravimetric analysis ( TG ), differential scanning calorimetry ( DSC ), X- ray diffraction( XRD ) techniques, energy dispersive spectroscopy( EDS ), and transmission electron microscopy( TEM ). The thermal instability and the thermal decomposition of low-temperature strontium M-type hexaferrite crystallized at about 600℃ were confirmed for the first time by XRD method. The decomposition of the low-temperature strontium M-type hexaferrite took place at about 688.6℃ determined by DSC investigation. The low-temperature strontium M-type hexaferrite nanopartieles were decomposed into SrFeO2.5 with an orthorthombic cell and Fe2O3 with a tetragonal cell as well as possibl α-Fe2O3 . The agglomerated particles with sizes less than 200 nm obtained at 800℃ were plesiomorphous to strontium M-type hexaferrite. The thermally stable strontium M-type hexaferrite nanopartieles with sizes less than 100um cotdd take place at 900 ℃ . Up to 1000 ℃ , the phose transformotion to form strontium M-type hexaferrite was ended, the calcinations with the sizes more than 1μm were composed of α-Fe2O3 and strontium M-type hexaferrite. The method of distinguishing γ-Fe2O3 with a spinel structure from Fe2O3 with tetragonal cells by using powder XRD method was proposed. Fe2O3 with tetragonal cells to be crystallized before the crystallization of thermally stable strontium M-type hexaferrite was confirmed for the first time. The reason why α- Fe2O3 as an additional phase appears in the calcinations is the cationic vacancy of stroutium M-type hexaferrite , SrFe12-x□O19 (0≤x ≤0.5).  相似文献   

15.
Cr-doped Li3V2(PO4)3 cathode materials Li3V2−x Cr x (PO4)3 were prepared by a carbothermal reduction(CTR) process. The properties of the Cr-doped Li3V2(PO4)3 were investigated by X-ray diffraction (XRD), scanning electron microscopic (SEM), and electrochemical measurements. Results show that the Cr-doped Li3V2(PO4)3 has the same monoclinic structure as the undoped Li3V2(PO4)3, and the particle size of Cr-doped Li3V2(PO4)3 is smaller than that of the undoped Li3V2(PO4)3 and the smallest particle size is only about 1 μm. The Cr-doped Li3V2(PO4)3 samples were investigated on the Li extraction/insertion performances through charge/discharge, cyclic voltammogram (CV), and electrochemical impedance spectra(EIS). The optimal doping content of Cr was that x=0.04 in the Li3V2−x Cr x (PO4)3 samples to achieve high discharge capacity and good cyclic stability. The electrode reaction reversibility was enhanced, and the charge transfer resistance was decreased through the Cr-doping. The improved electrochemical performances of the Cr-doped Li3V2(PO4)3 cathode materials are attributed to the addition of Cr3+ ion by stabilizing the monoclinic structure. Funded by the Guangxi Natural Science Foundation(No. 0832259) and the National Basic Research Program of China (No. 2007CB613607)  相似文献   

16.
A series of nanometer TiO2 photocatalysts co-doped respectively with rare earth Er3+-Ce3+ and La3+-Fe3+ were prepared by sol-gel method,and the photocatalytic activity under ultra-violet light was evaluated by photocatalytic degradation of methyl blue.The crystallographic forms,particles size,and morphology were characterized by XRD and TEM.The results showed that the optimum heat temperature of co-doped TiO2 was 550 ℃,and the co-doped TiO2 kept anatase.The anatase crystal had the average size of 20 nm.The ...  相似文献   

17.
Properties of hydroxyapatite (HA, Ca10(PO4)6(OH)2), including bioactivity, biocompatibility, solubility and adsorption could be tailored over wide ranges by the control of particle composition, particle size and morphology. In order to satisfy various applications, well-crystallized pure HA nanoparticles were synthesized at moderate temperatures by hydrothermal synthesis, and HA nanoparticles with different lengths were obtained by adding organic additives. X-ray diffractometry (XRD) and Fourier transform infrared (FTIR) spectrometry were used to characterize these nanoparticles, and the morphologies of the HA particles were observed by transmission electron microscopy (TEM). The results demonstrate that shorter rod-like HA particles can be prepared by adding cetyltrimethylammonium bromide (CTAB), as the additive of CTAB can block the HA crystal growth along with c-axis. And whisker HA particles are obtained by adding ethylenediamine tetraacetic acid (EDTA), since EDTA may have effect on the dissolution-reprecipitation process of HA.  相似文献   

18.
Microwave absorbing properties of high titanium slag were investigated by using microwave cavity perturbation technique. High titanium slag containing more than 90% TiO2 was prepared by carbothermal reduction of ilmenite. The temperature rise curve of high titanium slag in microwave heating process was obtained. Crystalline compounds of high titanium slag before and after microwave irradiation were obtained and characterized by X-ray diffractometry (XRD). Effects of particle size of high titanium slag and mixtures of high titanium slag with different mass fractions of V2O5 on microwave absorbing properties were investigated systematically. The results show that high titanium slag has good microwave absorption property; untreated high titanium slag mainly consists of crystalline compounds of anatase and iron titanium oxide, while the microwave-irradiation treated one is mainly composed of crystalline compounds of rutile and iron titanium oxide. Synthetic anatase is transformed completely into rutile at about 1 050 °C for 20 min under microwave irradiation. High frequency shift and low amplitude of voltage make high titanium slag an ideal microwave absorbent. 180 μm of particle size and 10% mass fraction of V2O5 are found to be the optimum conditions for microwave absorption. Foundation item: Project(2007CB613606) supported by the Major State Basic Research and Development Program of China; Project(50734007) supported by the National Natural Science Foundation of China  相似文献   

19.
Stable superhydrophobic n-tetradecanoic acid (CH3(CH2)14COOH) film was prepared by means of sol-gel and self-assembly techniques, with a very high seawater contact angle (158°) and a small sliding angle (<5°). There are many microconvexities with binary structure uniformly distributed on the surface atop the film with an average diameter of about 80 nm by observation of scanning electron microscope (SEM), and the film surface structure is similar to that of lotus surface. The corrosion resistance behavior of intermetallic Fe3Al with the biomimetic superhydrophobic film surface is improved obviously when compared with pure Fe3Al sample by measurement of electrochemical impedance spectroscopy (EIS). Supported by the Excellent Mid-youthful Scientist Encouraging Foundation of Shandong Province (Grant No. 2006BS04021) and the National Natural Science Foundation of China (Grant Nos. 50672090 and 50702053)  相似文献   

20.
Magnetite Fe3O4 walnut spherical particles and octahedral microcrystals were successfully synthesized from K4 [Fe (CN)6], K3 [Fe (CN)6] and NaOH reagents via a simple hydrothermal process. And the uniform morphology of octahedral microcrystals was obtained in the presence of ethylene glycol. The morphology and structure of products were characterized by powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The results showed that the Fe3O4 walnut spherical particles and octahedral microcrystals were single crystals with the face-center cubic structure and with size distributions from 2.2 to 8.6 μm and 1.6 to 12.5 μm, respectively. Their magnetic properties were detected by a vibrating sample magnetometer at room temperature. The walnut spherical particles exhibited a ferromagnetic behavior with the coercive force (Hc), saturation magnetization (Ms) and remanent magnetization (Mr) being 150.57 Oe, 97.634 and 12.05 emu/g, respectively. For the octahedral microcrystals they were 75.28 Oe, 101.90 and 6.69 emu/g, respectively. Different sizes of walnut spherical particles were controlled synthesized through adjusting the NaOH concentration. It was found that ethylene glycol molecules have a significant effect on the formation of Fe3O4 octahedra. A possible mechanism was also proposed to account for the growth of these Fe3O4 products. Supported by Fund of weinan Teachers University (Grant No. 08YKZ008), the National Natural Science Foundation of China (Grant No. 20573072) and Doctoral Fund of Ministry of Education of China (Grant No. 20060718010)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号