首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
以过硫酸铵(APS)为引发剂,N-氨基甲酰马来酸(NCMA)、聚乙二醇单烯丙基醚(APEG)和甲基丙烯磺酸钠(SMAS)为聚合单体,合成N-氨基甲酰马来酸-甲基丙烯磺酸钠-聚乙二醇单烯丙基醚(SP)。通过FTIR和1H NMR谱图对SP结构进行表征。以净浆流动度为指标,考察了引发剂用量、反应温度、SMAS/APEG摩尔比和NCMA/APEG摩尔比对净浆流动度的影响,并以净浆流动度、Zeta电位和吸附量为指标,探讨了酰胺型聚羧酸系减水剂与水泥的作用机理。试验结果表明,最佳反应条件为SMAS/APEG摩尔比1.2,NCMA/APEG摩尔比1.0,引发剂用量0.4%(质量分数)和反应温度为50℃;其分散机理主要是由于减水剂分子中的阴阳离子基团与水泥颗粒表面形成物理吸附,使水泥颗粒之间产生了立体斥力而产生分散作用。  相似文献   

2.
以过硫酸铵(APS)为引发剂,N-氨基甲酰马来酸(NCMA)、聚乙二醇单烯丙基醚(APEG)和甲基丙烯磺酸钠(SMAS)为聚合单体,合成N-氨基甲酰马来酸-甲基丙烯磺酸钠-聚乙二醇单烯丙基醚(SP)。通过FTIR和1H NMR谱图对SP结构进行表征。以净浆流动度为指标,考察了引发剂用量、反应温度、SMAS/APEG摩尔比和NCMA/APEG摩尔比对净浆流动度的影响,并以净浆流动度、Zeta电位和吸附量为指标,探讨了酰胺型聚羧酸系减水剂与水泥的作用机理。试验结果表明,最佳反应条件为SMAS/APEG摩尔比1.2,NCMA/APEG摩尔比1.0,引发剂用量0.4%(质量分数)和反应温度为50℃;其分散机理主要是由于减水剂分子中的阴阳离子基团与水泥颗粒表面形成物理吸附,使水泥颗粒之间产生了立体斥力而产生分散作用。  相似文献   

3.
一种聚羧酸高性能减水剂的研究   总被引:4,自引:0,他引:4  
奚强  朱本玮  邝生鲁 《现代化工》2004,24(12):38-40
将丙烯酸、甲基烯丙基磺酸钠、马来酸酐聚乙二醇单甲醚单酯大单体在水溶液中用自由基聚合的方法,用过硫酸铵为 引发剂合成了具有梳状结构的聚羧酸高性能减水剂。测试了该减水剂的应用性能。结果表明该减水剂具有高的减水率,与不 同水泥具有良好的适应性,具有较好的坍落度保持性,适宜于配制高性能混凝土。  相似文献   

4.
以聚乙二醇单甲醚和马来酸酐为原料合成了大分子马来酸酐聚乙二醇单甲醚单酯,适宜的合成条件为n(聚乙二醇单甲醚):n(马来酸酐)=1:1.2,100℃下反应3 h,并用不同聚合度的马来酸酐聚乙二醇单甲醚单酯大分子单体与丙烯酸、甲基丙烯酸羟乙酯、乙烯基磺酸钠等单体进行自由基共聚合,得到了不同侧链长度的羧酸共聚物.同时,对羧酸共聚物作为水泥减水剂的减水性能进行了考察,研究结果表明,聚乙二醇单甲醚相对分子质量为1 000,引发剂z(KlX5)=2.5%时,水泥浆料的流动性最高,说明羧酸共聚物减水剂的分散效果为最好.  相似文献   

5.
以聚乙二醇和甲基丙烯酸为原料,在催化剂作用下,通过酯化合成出甲基丙烯酸聚乙二醇单酯,通过正交试验得到制备大单体的最佳反应条件。并以甲基丙烯酸、甲基丙烯磺酸钠和自制大单体为主要原料合成聚羧酸减水剂,通过正交试验确定了最佳反应条件:在单体摩尔比n(MAA)∶n(MPEGMAA)∶n(SMAS)=3∶1∶1,引发剂用量为7.0%,反应温度为75℃,反应物浓度为25%,反应时间为3.0h的条件下,所得产品可使水泥净浆的流动度达到296mm。产品经红外光谱分析,证明为目标产物。  相似文献   

6.
辛秀兰 《精细化工》2011,28(8):747-750,779
利用正辛醇、十二醇、十四醇3个脂肪醇与马来酸酐、氯丙烯反应,合成了3个烯丙基型马来酸双酯。考察了溶剂和催化剂对双酯化反应产率的影响,通过正交实验优化了双酯的反应条件,得出了双酯化反应最优工艺条件:n(辛基马来酸单酯钠盐)∶n(氯丙烯)=1∶2.5,温度60℃,时间7 h,辛基烯丙基马来酸双酯的产率为76.8%;n(十二烷基马来酸单酯钠盐)∶n(氯丙烯)=1∶2,温度60℃,时间6 h,十二烷基烯丙基马来酸双酯的产率为92.1%;n(十四烷基马来酸单酯钠盐)∶n(氯丙烯)=1∶2,温度65℃,时间6 h,十四烷基烯丙基马来酸双酯的产率为78.5%。对合成中间体和目标双酯物用红外光谱和核磁共振氢谱等进行了表征。  相似文献   

7.
马斐  陈昌青  王颖 《广东化工》2014,41(19):44-45,38
以聚乙二醇单甲醚1200(MPEG1200)与丙烯酸(AA)为原料,在无溶剂条件下进行酯化法,成功制备了丙烯酸聚乙二醇单甲醚1200酯(AA-MPEG1200)大单体。并以所合成的大单体与甲基丙烯酸(MAA)、甲基丙烯磺酸钠(SMAS)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)等不饱和单体在过硫酸铵(APS)引发下共聚,合成聚羧酸减水剂。经正交实验优选出最佳合成工艺条件如下:即MAA/AA∶MPEG-AA为4∶1,AMPS∶MPEG-AA为0.4∶1,SAS∶MPEG-AA=0.6∶1,APS用量为单体总质量的5%;反应温度为80℃、反应时间为8 h。所合成的聚羧酸减水剂具有良好的分散性和保塑性。  相似文献   

8.
以马来酸聚乙二醇单酯(MAPEG)、丙酸甲酯(MA)和甲基烯丙基磺酸钠(SMAS)为原料,通过共聚反应制得MAPEG-MA-SMAS三元共聚物高效减水剂。讨论了共聚反应中影响合成减水剂性能的因素,并用GPC表征了减水剂的相对分子质量及其分布。通过SEM分析了水泥石的微观结构。结果显示,当n(MAPEG)∶n(MA)∶n(SMAS)=1.0∶0.5∶0.5,聚合反应温度为85℃,聚合反应时间为7 h,引发剂用量为单体总质量的3.6%,合成的减水剂综合性能良好。当其掺量为0.3%时,水泥净浆初始流动度达325 mm。GPC分析显示减水剂平均相对分子质量Mw=15 345,分散系数Mw/Mn=2.087。SEM分析结果显示减水剂使水泥石大孔率降低,晶形更完整。  相似文献   

9.
张会宜 《河北化工》2014,(10):24-26,83
根据减水剂作用机理,用马来酸酐、马来酸二丁酯和丙烯酸为原料,合成了其三元共聚物的钠盐(PMMANa),探讨了合成条件对聚合物减水性能的影响,用正交实验确定了最佳合成条件:单位配比酯∶酐∶酸为3∶4∶4,引发剂用量为2%,单体总量为20%,温度为70℃,链转移剂用量为3.0%。最佳合成条件下制备的PMMANa减水率为35.19%,其减水效果高于阴离子型减水剂PAANa。  相似文献   

10.
李姣 《精细化工》2013,30(5):585-590
以马来酸聚乙二醇单酯(MAPEG)、丙烯酸羟乙酯(HEA)、甲基丙烯磺酸钠(SMAS)为原料通过共聚反应制得MAPEG-HEA-SMAS三元共聚聚羧酸高效减水剂,考察了单体摩尔比、引发剂用量、反应温度等合成条件对减水剂性能的影响,并用IR对减水剂的分子结构进行表征,以GPC表征减水剂的相对分子质量(简称分子量,下同)及其分布,通过SEM观察了掺入减水剂的水泥石微观结构。结果显示,当n(MAPEG)∶n(HEA)∶n(SMAS)=1.0∶1.5∶1.0,聚合反应温度为88℃,聚合反应时间为7.5 h,引发剂用量为单体总质量的3.5%,PEG相对分子质量(简称分子量,下同)为1 000时,合成的减水剂综合性能良好。当其掺量为0.45%(质量分数)时,水泥净浆初始流动度达308 mm。GPC分析显示,减水剂平均分子量Mn=7 752,分散系数Mw/Mn=2.091;SEM分析结果显示,聚羧酸减水剂使水泥石大孔率降低,结构更密实。  相似文献   

11.
以丙烯酸、丙烯磺酸钠和次磷酸钠为原料 ,合成了含磷丙烯酸 -丙烯磺酸钠共聚物阻垢分散剂。最佳工艺条件为 :丙烯酸与丙烯磺酸钠的物质的量比为 6∶1 ,次磷酸钠和引发剂的用量分别为单体总质量的 1 0 %和 1 5% ,反应时间 4h ,反应温度 95℃。阻垢实验结果表明 ,含磷丙烯酸-丙烯磺酸钠共聚物对碳酸钙、硫酸钙和磷酸钙的阻垢率分别为 73 1 %、1 0 0 0 %和 87 9%。  相似文献   

12.
以苯乙烯磺酸钠(SSS)、丙烯酰胺(AM)和丙烯酸(AA)为原料,合成了SSS/AM/AA共聚物降粘剂,并对其在泥浆中的降粘性能进行了评价。最佳合成方案为:n(苯乙烯磺酸钠)∶n(AM)∶n(AA)=2∶1∶4,单体质量为15%,反应温度80℃,反应时间3 h,引发剂用量为2%。在此条件下,合成的聚合物降粘剂结构和预计的结构一致,具有较好的抗温能力,在盐浓度为30%的盐水泥浆中,降粘率为62.71%。  相似文献   

13.
新型阴离子水煤浆分散剂的制备与表征   总被引:2,自引:0,他引:2  
以甲基丙烯酸(MAA)和丙烯磺酸钠(SAS)为原料,(NH4)2S2O8/NaHSO3氧化还原体系作为引发剂,NaH-SO3同时为链转移剂,采用水溶液自由基聚合反应,制得了甲基丙烯酸-丙烯磺酸钠共聚物(PMS)分散剂,通过TGA-DSC、GPC及IR等手段对聚合物的结构、热稳定性以及相对分子质量及其分布进行了表征和分析。并考察了PMS的合成条件及用量对水煤浆分散效果的影响。实验表明,PMS最佳合成条件为:甲基丙烯酸和丙烯磺酸钠的单体摩尔比为0.65∶0.35,引发剂用量占单体的质量分数8%,其中(NH4)2S2O8∶NHSO3=4∶1.67,反应温度为75℃,其用量为0.5%时,水煤浆的分散性能最佳。  相似文献   

14.
晏凤梅  窦瑶  孙凯  尹国强 《广东化工》2011,38(9):13-14,33
以甲醛和亚硫酸氢钠改性的羽毛蛋白(MFP)和丙烯酸(AA)为主要原料,N,N-′亚甲基双丙烯酰胺(NMBA)为交联剂,过硫酸钾-亚硫酸氢钠为引发剂,采用溶液聚合法制备改性羽毛蛋白接枝聚丙烯酸高吸水性树脂[P(MFP-g-AA)],并用土壤稀释液微生物法,研究了羽毛蛋白基高吸水性树脂的生物降解性能。考察了,制备水溶性羽毛蛋白的最佳工艺条件为ω(亚硫酸氢钠)∶ω(羽毛)为30∶100、氢氧化钠浓度为0.45%、反应温度96℃、反应时间2 h。在此条件下合成的[P(MFP-g-AA)]树脂生物降解性能最好,其凝胶薄片在5 mL土壤稀释溶液中放置25 d,凝胶表面基本被菌落覆盖。  相似文献   

15.
一种新型无磷共聚物阻垢剂的研究   总被引:1,自引:0,他引:1  
在水溶液中,以过硫酸铵为引发剂,衣康酸(IA)、丙烯酰胺(AM)、甲基丙烯磺酸钠(SMAS)、丙烯酸甲酯(MA)为反应单体,合成了无磷共聚物(IA/AM/SMAS/MA)。通过正交实验确定了无磷共聚物合成的最佳合成条件。利用红外光谱对共聚物的结构进行了表征,采取静态阻垢的方法评价了阻垢剂阻碳酸钙生成的性能。结果表明:当单体配比n(衣康酸)/n(丙烯酰胺)/n(甲基丙烯磺酸钠)/n(丙烯酸甲酯)=4∶3∶2∶3,引发剂用量为单体的10%(wt),反应温度为90℃,反应时间为4 h。此条件下合成的阻垢剂的阻垢率可以达到88.6%。  相似文献   

16.
AA-SAS共聚物的合成及其阻垢性能   总被引:6,自引:0,他引:6  
以水为溶剂、过硫酸盐为引发剂,以丙烯酸(AA)和烯丙基磺酸钠(SAS)为单体,合成了丙烯酸-烯丙基磺酸钠(AA-SAS)共聚物阻垢剂。探讨了单体配比、引发剂用量、反应体系温度和分子量调节剂对聚合物阻垢性能的影响。结果表明,共聚物对磷酸钙阻垢作用具有阈值效应,当用量大于12mg/L时,阻垢率约为99%。  相似文献   

17.
马斐  王安建  黄小珠  王颖  杨君 《广东化工》2014,(17):49-50,60
设计四元单体共聚体系,以聚乙二醇异戊烯丙基醚2400(TPEG)、丙烯酸(AA)、甲基丙烯磺酸钠(SMAS)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)在过硫酸铵(APS)为引发剂存在下共聚,一步法合成高性能的聚羧酸减水剂。经正交实验优选出最佳合成工艺条件如下:AA/TPEG摩尔比为3∶1;AMPS/TPEG摩尔比为0.3∶1,SAS/TPEG摩尔比为0.8∶1,引发剂APS的用量为共聚单体总质量的4%,反应温度为70℃、反应时间为8 h。所合成的聚羧酸减水剂具有优异的减水性能和良好的保坍性能,并能大幅提高所得混凝土拌合物的强度。  相似文献   

18.
高瑞军  吕生华 《精细化工》2011,28(10):1019-1023
以丙烯酸(AA)、甲基丙烯磺酸钠(MAS)、马来酸酐接枝β-环糊精(MAH-β-CD)和甲基烯丙基聚氧乙烯醚(APEG)为原料,通过水溶液自由基共聚制备了β-CD改性聚羧酸系减水剂(MPC)。考察了反应物摩尔比、引发剂用量、反应时间及反应温度对减水剂性能的影响。当单体摩尔比n(AA)∶n(MAS)∶n(MAH-β-CD)∶n(APEG)=5∶0.5∶0.1∶1、引发剂过硫酸铵(APS)用量为单体总质量的5%、反应温度为90℃、反应时间为5 h时,所得减水剂性能较好。应用结果表明,掺MPC后水泥净浆流动度可达306 mm、初凝时间为440 min、减水率达32.2%。SEM和强度测试结果表明,掺有MPC的水泥石的结构更加紧密匀质,孔洞更加微小,有利于混凝土后期结构的发展。  相似文献   

19.
文章以腐殖酸为原料制得可溶性腐植酸钠,再以2-丙烯酰胺基-2-甲基丙磺酸、丙烯酰胺、丙烯酸和腐植酸钠为单体,采用过硫酸钾为引发剂,用水溶液聚合法合成了抗高温降滤失剂,通过设计正交试验得到最佳反应条件:m(2-丙烯酰胺基-2-甲基丙磺酸)∶m(丙烯酰胺)∶m(丙烯酸)∶m(腐植酸钠)=3∶2∶1∶4,引发剂所占反应物的质量分数为0.7%,反应温度为65℃,pH=7,通过钻井液流变性能及滤失性测试,结果表明合成的降滤失剂有较好的提粘切作用、较好的高温(200℃)降滤失性能、抗盐至饱和。  相似文献   

20.
尹沾合  张友全  谭沛 《应用化工》2007,36(12):1207-1210,1214
以含阻聚剂的工业级丙烯酸(AA)、丙烯酸甲酯(MA)及木薯淀粉、丙烯酰胺(AM)为原料,采用反相悬浮法,使用自配分散剂,环己烷为连续相,过硫酸钾和亚硫酸氢钠为引发剂,N,N-亚甲基双丙烯酰胺为交联剂合成了高吸水树脂。结果表明,最佳工艺条件为:m(淀粉)∶m(AA)∶m(AM)=1.0∶4.5∶0.9,MA、交联剂加入量分别为5.0%,0.3%(相对AM和AA总质量),引发剂(两次引发)浓度分别为2.0,13.5 mmol/L,油水比例为1.90∶1.00(体积比)。在上述条件下制得的树脂的吸水率≥600 g/g,吸盐率≥60 g/g,环己烷回收率为97.3%。由于引入适量的MA,产物吸水率和吸盐率提高了20%,产物形态由最初的粘接颗粒变成分散颗粒。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号