首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In negation-limited complexity, one considers circuits with a limited number of NOT gates, being motivated by the gap in our understanding of monotone versus general circuit complexity, and hoping to better understand the power of NOT gates. We give improved lower bounds for the size (the number of AND/OR/NOT) of negation-limited circuits computing Parity and for the size of negation-limited inverters. An inverter is a circuit with inputs x 1,…,x n and outputs ¬ x 1,…,¬ x n . We show that: (a) for n=2 r ?1, circuits computing Parity with r?1 NOT gates have size at least 6n?log?2(n+1)?O(1), and (b) for n=2 r ?1, inverters with r NOT gates have size at least 8n?log?2(n+1)?O(1). We derive our bounds above by considering the minimum size of a circuit with at most r NOT gates that computes Parity for sorted inputs x 1???x n . For an arbitrary r, we completely determine the minimum size. It is 2n?r?2 for odd n and 2n?r?1 for even n for ?log?2(n+1)??1≤rn/2, and it is ?3n/2??1 for rn/2. We also determine the minimum size of an inverter for sorted inputs with at most r NOT gates. It is 4n?3r for ?log?2(n+1)?≤rn. In particular, the negation-limited inverter for sorted inputs due to Fischer, which is a core component in all the known constructions of negation-limited inverters, is shown to have the minimum possible size. Our fairly simple lower bound proofs use gate elimination arguments in a somewhat novel way.  相似文献   

2.
We address the problem of minimizing power consumption when broadcasting a message from one node to all the other nodes in a radio network. To enable power savings for such a problem, we introduce a compelling new data streaming problem which we call the Bad Santa problem. Our results on this problem apply for any situation where: (1) a node can listen to a set of n nodes, out of which at least half are non-faulty and know the correct message; and (2) each of these n nodes sends according to some predetermined schedule which assigns each of them its own unique time slot. In this situation, we show that in order to receive the correct message with probability 1, it is necessary and sufficient for the listening node to listen to a \(\Theta(\sqrt{n})\) expected number of time slots. Moreover, if we allow for repetitions of transmissions so that each sending node sends the message O(log?? n) times (i.e. in O(log?? n) rounds each consisting of the n time slots), then listening to O(log?? n) expected number of time slots suffices. We show that this is near optimal.We describe an application of our result to the popular grid model for a radio network. Each node in the network is located on a point in a two dimensional grid, and whenever a node sends a message m, all awake nodes within L distance r receive m. In this model, up to \(t<\frac{r}{2}(2r+1)\) nodes within any 2r+1 by 2r+1 square in the grid can suffer Byzantine faults. Moreover, we assume that the nodes that suffer Byzantine faults are chosen and controlled by an adversary that knows everything except for the random bits of each non-faulty node. This type of adversary models worst-case behavior due to malicious attacks on the network; mobile nodes moving around in the network; or static nodes losing power or ceasing to function. Let n=r(2r+1). We show how to solve the broadcast problem in this model with each node sending and receiving an expected \(O(n\log^{2}{|m|}+\sqrt{n}|m|)\) bits where |m| is the number of bits in m, and, after broadcasting a fingerprint of m, each node is awake only an expected \(O(\sqrt{n})\) time slots. Moreover, for t≤(1?ε)(r/2)(2r+1), for any constant ε>0, we can achieve an even better energy savings. In particular, if we allow each node to send O(log?? n) times, we achieve reliable broadcast with each node sending O(nlog?2|m|+(log?? n)|m|) bits and receiving an expected O(nlog?2|m|+(log?? n)|m|) bits and, after broadcasting a fingerprint of m, each node is awake for only an expected O(log?? n) time slots. Our results compare favorably with previous protocols that required each node to send Θ(|m|) bits, receive Θ(n|m|) bits and be awake for Θ(n) time slots.  相似文献   

3.
We initiate a new line of investigation into online property-preserving data reconstruction. Consider a dataset which is assumed to satisfy various (known) structural properties; e.g., it may consist of sorted numbers, or points on a manifold, or vectors in a polyhedral cone, or codewords from an error-correcting code. Because of noise and errors, however, an (unknown) fraction of the data is deemed unsound, i.e., in violation with the expected structural properties. Can one still query into the dataset in an online fashion and be provided data that is always sound? In other words, can one design a filter which, when given a query to any item I in the dataset, returns a sound item J that, although not necessarily in the dataset, differs from I as infrequently as possible. No preprocessing should be allowed and queries should be answered online.We consider the case of a monotone function. Specifically, the dataset encodes a function f:{1,…,n}?? R that is at (unknown) distance ε from monotone, meaning that f can—and must—be modified at ε n places to become monotone.Our main result is a randomized filter that can answer any query in O(log?2 nlog? log?n) time while modifying the function f at only O(ε n) places. The amortized time over n function evaluations is O(log?n). The filter works as stated with probability arbitrarily close to 1. We provide an alternative filter with O(log?n) worst case query time and O(ε nlog?n) function modifications. For reconstructing d-dimensional monotone functions of the form f:{1,…,n} d ? ? R, we present a filter that takes (2 O(d)(log?n)4d?2log?log?n) time per query and modifies at most O(ε n d ) function values (for constant d).  相似文献   

4.
We introduce a construction of a set of code sequences {Cn(m) : n ≥ 1, m ≥ 1} with memory order m and code length N(n). {Cn(m)} is a generalization of polar codes presented by Ar?kan in [1], where the encoder mapping with length N(n) is obtained recursively from the encoder mappings with lengths N(n ? 1) and N(n ? m), and {Cn(m)} coincides with the original polar codes when m = 1. We show that {Cn(m)} achieves the symmetric capacity I(W) of an arbitrary binary-input, discrete-output memoryless channel W for any fixed m. We also obtain an upper bound on the probability of block-decoding error Pe of {Cn(m)} and show that \({P_e} = O({2^{ - {N^\beta }}})\) is achievable for β < 1/[1+m(? ? 1)], where ? ∈ (1, 2] is the largest real root of the polynomial F(m, ρ) = ρm ? ρm ? 1 ? 1. The encoding and decoding complexities of {Cn(m)} decrease with increasing m, which proves the existence of new polar coding schemes that have lower complexity than Ar?kan’s construction.  相似文献   

5.
We consider the estimation problem for an unknown vector β ∈ Rp in a linear model Y = + σξ, where ξ ∈ Rn is a standard discrete white Gaussian noise and X is a known n × p matrix with np. It is assumed that p is large and X is an ill-conditioned matrix. To estimate β in this situation, we use a family of spectral regularizations of the maximum likelihood method βα(Y) = H α(X T X) β ?(Y), α ∈ R+, where β ?(Y) is the maximum likelihood estimate for β and {H α(·): R+ → [0, 1], α ∈ R+} is a given ordered family of functions indexed by a regularization parameter α. The final estimate for β is constructed as a convex combination (in α) of the estimates βα(Y) with weights chosen based on the observations Y. We present inequalities for large deviations of the norm of the prediction error of this method.  相似文献   

6.
The algebraic immunity of a Boolean function is a parameter that characterizes the possibility to bound this function from above or below by a nonconstant Boolean function of a low algebraic degree. We obtain lower bounds on the algebraic immunity for a class of functions expressed through the inversion operation in the field GF(2 n ), as well as for larger classes of functions defined by their trace forms. In particular, for n ≥ 5, the algebraic immunity of the function Tr n (x ?1) has a lower bound ?2√n + 4? ? 4, which is close enough to the previously obtained upper bound ?√n? + ?n/?√n?? ? 2. We obtain a polynomial algorithm which, give a trace form of a Boolean function f, computes generating sets of functions of degree ≤ d for the following pair of spaces. Each function of the first (linear) space bounds f from below, and each function of the second (affine) space bounds f from above. Moreover, at the output of the algorithm, each function of a generating set is represented both as its trace form and as a polynomial of Boolean variables.  相似文献   

7.
We show that converting an n-digit number from a binary to Fibonacci representation and backward can be realized by Boolean circuits of complexity O(M(n) log n), where M(n) is the complexity of integer multiplication. For a more general case of r-Fibonacci representations, the obtained complexity estimates are of the form \({2^O}{(\sqrt {\log n} )_n}\).  相似文献   

8.
The Doob graph D(m, n), where m > 0, is a Cartesian product of m copies of the Shrikhande graph and n copies of the complete graph K 4 on four vertices. The Doob graph D(m, n) is a distance-regular graph with the same parameters as the Hamming graph H(2m + n, 4). We give a characterization of MDS codes in Doob graphs D(m, n) with code distance at least 3. Up to equivalence, there are m 3/36+7m 2/24+11m/12+1?(m mod 2)/8?(m mod 3)/9 MDS codes with code distance 2m + n in D(m, n), two codes with distance 3 in each of D(2, 0) and D(2, 1) and with distance 4 in D(2, 1), and one code with distance 3 in each of D(1, 2) and D(1, 3) and with distance 4 in each of D(1, 3) and D(2, 2).  相似文献   

9.
We consider two quantities that measure complexity of binary strings: KM(x) is defined as the negative logarithm of continuous a priori probability on the binary tree, and K(x) denotes prefix complexity of a binary string x. In this paper we answer a question posed by Joseph Miller and prove that there exists an infinite binary sequence ω such that the sum of 2KM(x)?K(x) over all prefixes x of ω is infinite. Such a sequence can be chosen among characteristic sequences of computably enumerable sets.  相似文献   

10.
On conditional diagnosability and reliability of the BC networks   总被引:1,自引:1,他引:0  
An n-dimensional bijective connection network (in brief, BC network), denoted by X n , is an n-regular graph with 2 n nodes and n2 n?1 edges. Hypercubes, crossed cubes, twisted cubes, and Möbius cubes all belong to the class of BC networks (Fan and He in Chin. J. Comput. 26(1):84–90, [2003]). We prove that the super connectivity of X n is 2n?2 for n≥3 and the conditional diagnosability of X n is 4n?7 for n≥5. As a corollary of this result, we obtain the super connectivity and conditional diagnosability of the hypercubes, twisted cubes, crossed cubes, and Möbius cubes.  相似文献   

11.
We present methods to construct transitive partitions of the set E n of all binary vectors of length n into codes. In particular, we show that for all n = 2 k ? 1, k ≥ 3, there exist transitive partitions of E n into perfect transitive codes of length n.  相似文献   

12.
We prove that for all n = 2k ? 1, k ≥ 5, there exists a partition of the set of all binary vectors of length n into pairwise nonequivalent perfect binary codes of length n with distance 3.  相似文献   

13.
Let Z/(pe) be the integer residue ring modulo pe with p an odd prime and e ≥ 2. We consider the suniform property of compressing sequences derived from primitive sequences over Z/(pe). We give necessary and sufficient conditions for two compressing sequences to be s-uniform with α provided that the compressing map is of the form ?(x0, x1,...,xe?1) = g(xe?1) + η(x0, x1,..., xe?2), where g(xe?1) is a permutation polynomial over Z/(p) and η is an (e ? 1)-variable polynomial over Z/(p).  相似文献   

14.
The ambiguity of a nondeterministic finite automaton (NFA) N for input size n is the maximal number of accepting computations of N for inputs of size n. For every natural number k we construct a family \((L_{r}^{k}\;|\;r\in \mathbb{N})\) of languages which can be recognized by NFA’s with size k?poly(r) and ambiguity O(n k ), but \(L_{r}^{k}\) has only NFA’s with size exponential in r, if ambiguity o(n k ) is required. In particular, a hierarchy for polynomial ambiguity is obtained, solving a long standing open problem (Ravikumar and Ibarra, SIAM J. Comput. 19:1263–1282, 1989, Leung, SIAM J. Comput. 27:1073–1082, 1998).  相似文献   

15.
An outer-connected dominating set in a graph G = (V, E) is a set of vertices D ? V satisfying the condition that, for each vertex v ? D, vertex v is adjacent to some vertex in D and the subgraph induced by V?D is connected. The outer-connected dominating set problem is to find an outer-connected dominating set with the minimum number of vertices which is denoted by \(\tilde {\gamma }_{c}(G)\). In this paper, we determine \(\tilde {\gamma }_{c}(S(n,k))\), \(\tilde {\gamma }_{c}(S^{+}(n,k))\), \(\tilde {\gamma }_{c}(S^{++}(n,k))\), and \(\tilde {\gamma }_{c}(S_{n})\), where S(n, k), S +(n, k), S ++(n, k), and S n are Sierpi\(\acute {\mathrm {n}}\)ski-like graphs.  相似文献   

16.
This paper introduces α-systems of differential inclusions on a bounded time interval [t0, ?] and defines α-weakly invariant sets in [t0, ?] × ?n, where ?n is a phase space of the differential inclusions. We study the problems connected with bringing the motions (trajectories) of the differential inclusions from an α-system to a given compact set M ? ?n at the moment ? (the approach problems). The issues of extracting the solvability set W ? [t0, ?] × ?n in the problem of bringing the motions of an α-system to M and the issues of calculating the maximal α-weakly invariant set Wc ? [t0, ?] × ?n are also discussed. The notion of the quasi-Hamiltonian of an α-system (α-Hamiltonian) is proposed, which seems important for the problems of bringing the motions of the α-system to M.  相似文献   

17.
The performance of a linear error-detecting code in a symmetric memoryless channel is characterized by its probability of undetected error, which is a function of the channel symbol error probability, involving basic parameters of a code and its weight distribution. However, the code weight distribution is known for relatively few codes since its computation is an NP-hard problem. It should therefore be useful to have criteria for properness and goodness in error detection that do not involve the code weight distribution. In this work we give two such criteria. We show that a binary linear code C of length n and its dual code C of minimum code distance d are proper for error detection whenever d ≥ ?n/2? + 1, and that C is proper in the interval [(n + 1 ? 2d)/(n ? d); 1/2] whenever ?n/3? + 1 ≤ d ≤ ?n/2?. We also provide examples, mostly of Griesmer codes and their duals, that satisfy the above conditions.  相似文献   

18.
We consider a game between a group of n pursuers and one evader moving with the same maximum velocity along the 1-skeleton graph of a regular polyhedron. The goal of the paper is finding, for each regular polyhedron M, a number N(M) with the following properties: if nN(M), the group of pursuers wins, while if n < N(M), the evader wins. Part I of the paper is devoted to the case of polyhedra in ?3; Part II will be devoted to the case of ? d , d ≥ 5; and Part III, to the case of ?4.  相似文献   

19.
We study the properties of possible static, spherically symmetric configurations in k-essence theories with the Lagrangian functions of the form F(X), X?,α ?,α. A no-go theorem has been proved, claiming that a possible black-hole-like Killing horizon of finite radius cannot exist if the function F(X) is required to have a finite derivative dF/dX. Two exact solutions are obtained for special cases of kessence: one for F(X) = F 0 X 1/3, another for F(X) = F 0|X|1/2 ? 2Λ, where F 0 and Λ are constants. Both solutions contain horizons, are not asymptotically flat, and provide illustrations for the obtained nogo theorem. The first solution may be interpreted as describing a black hole in an asymptotically singular space-time, while in the second solution two horizons of infinite area are connected by a wormhole.  相似文献   

20.
We consider generalized Preparata codes with a noncommutative group operation. These codes are shown to induce new partitions of Hamming codes into cosets of these Preparata codes. The constructed partitions induce 2-resolvable Steiner quadruple systems S(n, 4, 3) (i.e., systems S(n, 4, 3) that can be partitioned into disjoint Steiner systems S(n, 4, 2)). The obtained partitions of systems S(n, 4, 3) into systems S(n, 4, 2) are not equivalent to such partitions previously known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号