首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Infrared spectroscopy was used for the characterization of some commercial bone cements and investigation of their interaction with bone marrow. The infrared spectra of the cements and their mixtures with bone marrow were recorded after various periods ranging from 1 day to 8 weeks. The quantitative analysis of infrared spectra of the mixtures provided strong evidence that a certain reaction takes place between the acrylic resins and the bone marrow. It was found that the rate of reaction depends on the concentration of the bone marrow and the ageing time. The rate of reaction showed a maximum at 22 and 31 days according to the concentration of the bone marrow and then decreased with ageing up to 8 weeks.  相似文献   

2.
Drug-loaded bone cement is used as an application method to prevent and treat prosthesis-related infection. Despite the commercial availability of drug-loaded bone cement, low release rate of drugs from drug-loaded bone cement may result in the emergence of drug-resistant coagulase-negative staphylococci in subsequent deep infection. This work presents a method to control and increase both the drug release rate and total release amounts of drugs for drug-loaded bone cement without losing the mechanical properties of cement. A novel drug-loaded bone cement is also developed by introducing cross-linked poly(methylmethacrylate-acrylic acid sodium salt) particles into bone cement. Capable of increasing the hydrophilicity of the cement and allowing fluids to pass into the cement, the bone cement developed here supplements both the drug release rate and total release amounts of drugs.  相似文献   

3.
Commercial acrylic bone cements are supplied as two components, a polymer powder and a liquid monomer. Mixing of the two components is followed by a progressive polymerization of the liquid monomer to yield a solid mass, a high level of heat being generated during this exothermic reaction. The exposure of bone to high temperatures has led to incidences of bone necrosis and tissue damage, ultimately resulting in failure of the prosthetic fixation. The aim of this study was to determine the thermal properties of two acrylic bone cements as they progress through their polymerization cycles. It was also felt that there was a need to quantify the variations in the curing characteristics as a function of preparing bone cement by different techniques, hand mixing and vacuum mixing. A number of parameters were calculated using the data gathered from the investigation: peak temperature, cure temperature, cure time, and the cumulative thermal necrosis damage index. The results show the temperature profile recorded during polymerization was lowest when the cement was prepared using the Howmedica Mix-Kit I® system: 36 °C for Palacos R® and 41 °C for CMW3® respectively. When the acrylic cements were prepared in any vacuum mixing system there was evidence of an increase in the cure temperature. The main factor that contributed to this rise in temperature was an imbalance in the polymer powder : liquid monomer ratio, there was a high incidence of unmixed powder visible in the mixing barrel of some contemporary vacuum mixing devices. Observing the thermal characteristics of the polymethyl methacrylate (PMMA) bone cements assessed, it was found that particular formulations of bone cements are suited to certain mixing methodologies. It is vital that a full investigation is conducted on a cement mixing/delivery system prior to its introduction into the orthopaedic market.  相似文献   

4.
Samples of polymethylmethacrylate (PMMA) bone cement, used in the fixation of hip prostheses, have been recovered from 11 patients after in service life spans of between 15 and 24 years. Eighteen samples in total have been recovered from the acetabular and/or femoral cement. Samples were subjected to three point bending tests, their density, porosity and microhardness determined and all specimens were examined using EDX and X-ray techniques. Since the porosity of many of the samples is very high, the continuous matrix properties are inferred from the performance of individual specimens. No evidence has been found to suggest that the PMMA has deteriorated whilst in-vivo and the mechanical properties of the cement matrices appear to be comparable to freshly made PMMA.  相似文献   

5.
6.
Acrylic bone cement is used as a fixing device in total hip arthroplasty and it is based on polymethyl-methacrylate. Fatigue failure of the cement is the primary cause of loosening of cemented arthroplasties. Pores form in the acrylic material during mixing and curing, and an analysis of the fatigue life of the cement requires the elimination of the critical macropores, defined as having a diameter > 1 mm, which may bias the outcome of tests. Previous workers have rejected fatigue specimens either on a qualitative basis or at a specified pore size level. However various different thresholds have been considered but currently there is no quantitative criterion to define them. This investigation proposes a quantitative criterion for establishing a critical macropore size rejection threshold for fatigue specimens, and discusses the effectiveness of this criterion based on fatigue tests of radiopaque cement specimens.  相似文献   

7.
8.
The fracture properties of bone cement are strongly influenced by the complex interactions between the residual monomer and components of the media surrounding the bone cement. The aim of this study was to eliminate the influence of the residual monomer by fully curing the cement prior to storage in air, water, lipid or Ringer's solution at room or body temperature for up to 18 months. Subsequent mechanical testing indicated that initially there was a significant increase in the work of fracture values for all the samples stored in the fluid media. With longer-term storage periods a decrease was observed; this was attributed to the process of physical ageing. The removal of the residual monomer eliminated the monomer: lipid interaction, consequently the effect of the storage in lipid was similar to that observed for the other fluid media.  相似文献   

9.
The adsorption of aromatic sulfonic acids (ASA) and quaternary ammonium compounds (QAC) from dilute aqueous streams, with or without electrolytes and a  相似文献   

10.
A successful total hip replacement has an expected service life of 10-20 years with over 75% of failures due to aseptic loosening which is directly related to cement mantle failure. The aim of the present study was to investigate the addition of nanoparticles of calcium carbonate to acrylic bone cement. It was anticipated that an improvement in mechanical performance of the resultant nanocomposite bone cement would be achieved. A design of experiment approach was adopted to maximise the mechanical properties of the bone cement containing nanoparticles of calcium carbonate and to determine the constituents and preparation methods for which these occur. The selected conditions provided improvements of 21% in energy to maximum load, 10% in elastic modulus, 7% in bending strength and 8% in bending modulus when compared with bone cement without nanoparticles. Although cement containing nanoCaCO(3) coated in sodium citrate also enhanced the energy to maximum load by 28% and the elastic modulus by 14% when compared with control cement, it is not recommended as a factor in the production of nanocomposite bone cement due to reduction in the bending properties of the final bone cement.  相似文献   

11.
The aim of this paper is to report a series of experiments investigating the factors that influence the viscoelastic properties of acrylic bone cement. The effects of the brand of cement, the length of time since mixing, temperature, the hydration of the cement, and the influence of fat and or blood in the environment on the creep and stress relaxation behavior of the cement have been studied in laboratory-prepared specimens in tension, compression and four point bending. Although there are significant differences in the viscoelastic behavior of some of the different brands of polymethylmethacrylate based cements, these differences are small by comparison with the major effects that can be exerted by the length of time since mixing and some environmental factors. These effects have important practical consequences, especially with regard to the ability of bench top and theoretical studies to predict reliably the mechanical and viscoelastic behavior of acrylic cement in vivo.  相似文献   

12.
Calcium phosphate cement (CPC) is a good biomaterial for bone defect repair and as a delivery system for active agents. The aim of this study was to explore the physicochemical properties and in vitro soaking and release behaviors of gentamicin-loaded CPC with and without alginate; in particular, for biocompatibility. MTT colorimetric assay and RT-PCR were used to detect U2OS cell viability and level of cyclooxygenase-2 (COX-2), respectively. As a result, the setting time increased after the addition of 0.5% alginate and 5% gentamicin, reaching 19 min—significantly higher than the 8 min taken by the CPC control, demonstrating the adverse effect of alginate and gentamicin on the setting reaction of CPC. Gentamicin might reduce the diametral tensile strength, while alginate did not affect the strength. The rate of gentamicin release from CPC can be extended by the presence of alginate. The addition of gentamicin did not show signs of impaired cell viability, but alginate enhanced the cell viability. COX-2 expression of U2OSs cultured in the alginate-containing cement extract was about one-third level of the cement extract without alginate. Alginate-containing CPC is not only useful as a reservoir for antibiotic delivery but it also helps stimulate bone regeneration.  相似文献   

13.
14.
When used for the fixation of orthopaedic implants poly(methyl methacrylate) bone cement is prepared during surgery, and polymerises in situ. The technique for preparation of the bone cement involves mixing the liquid monomer and powder: two common mixing methods are hand mixing and vacuum mixing. Previous studies have shown that porosity depends on mixing technique. In this study, the fatigue strength of hand-mixed and vacuum-mixed cements is measured and correlated with the pore distribution resulting from each mixing technique. SN curves show that vacuum mixing improves the fatigue strength by an order of magnitude. However, there is greater variability of fatigue strength associated with vacuum-mixed cement. This is correlated with the appearance of an occasional large pore in the vacuum-mixed cement. If the cross-sectional area is corrected to take account of porosity in vacuum-mixed cement, an 8% increase in the association of the data is found. Using a two-parameter Weibull model, it can be shown that the vacuum-mixed cement has a greater Weibull life at the 50% probability-of-survival level. However, if a probability-of-survival close to 100% is required (i.e. high reliability), the hand-mixed cement is found to have superior fatigue behaviour. The SN curves can be explained by examination of the fracture surface features. The initiation stage of fatigue cracking is notably different for the two different mixing techniques. The lower fatigue strength of the hand-mixed cement can be explained by the interactions of pores on the fracture surface causing stress concentrations, whereas no such pore interactions occur in the vacuum-mixed cement.  相似文献   

15.
Bacterial infection remains a significant problem following total joint replacement. Efforts to prevent recurrent implant infection, including the use of antibiotic-loaded bone cement for implant fixation at the time of revision surgery, are not always successful. In this in vitro study, we investigated whether the addition of chitosan to gentamicin-loaded Palacos R bone cement increased antibiotic release and prevented bacterial adherence and biofilm formation by Staphylococcus spp. clinical isolates. Furthermore, mechanical tests were performed as a function of time post-polymerisation in pseudo-physiological conditions. The addition of chitosan to gentamicin-loaded Palacos R bone cement significantly decreased gentamicin release and did not increase the efficacy of the bone cement at preventing bacterial colonisation and biofilm formation. Moreover, the mechanical performance of cement containing chitosan was significantly reduced after 28 days of saline degradation with the compressive and bending strengths not in compliance with the minimum requirements as stipulated by the ISO standard for PMMA bone cement. Therefore, incorporating chitosan into gentamicin-loaded Palacos R bone cement for use in revision surgery has no clinical antimicrobial benefit and the detrimental effect on mechanical properties could adversely affect the longevity of the prosthetic joint.  相似文献   

16.
With the aim of improving some of the disadvantages of the acrylic bone cements, an acrylic bone cement based on polymethyl methacrylate has been modified by substituting different quantities, up to 20%, of the monomer methyl methacrylate (MMA) with the same amount of ethoxytriethyleneglycol monomethacrylate (TEG). The addition of this new monomer decreased noticeably the maximum temperature and increased both setting and working times. Mechanical testing revealed that the introduction of TEG gave rise to a less fragile bone cement by increasing slightly the total deformation without any change in the rest of the tensile parameters.  相似文献   

17.
The flexural properties of oligomer-modified bone cement with various quantities of crosslinking monomer with or without glass fibre reinforcement were studied. The flexural strength and modulus of acrylic bone cement-based test specimens (N=6), including crosslinked and oligomer-modified structures with or without glass fibres, were measured in dry conditions and after immersion in simulated body fluid (SBF) for seven days (analysis with ANOVA). One test specimen from the acrylic bone cement group containing 30 wt % crosslinking monomer of its total monomer content was examined with scanning electron microscope (SEM) to evaluate signs of the semi-interpenetrating polymer network (semi-IPN). The highest dry mean flexural strength (130 MPa) was achieved with the bone cement/crosslinking monomer/glass fibre combination containing 5 wt % crosslinking monomer of its monomer content. The highest flexural modulus (11.5 GPa) was achieved with the bone cement/crosslinking monomer/glass fibre combination containing 30 wt % crosslinking monomer of its monomer content. SBF storage decreased the flexural properties of the test specimens, as did the addition of the oligomer filler. Nevertheless, the addition of crosslinking monomer and chopped glass fibres improves considerably the mechanical properties of oligomer-modified (i.e. porosity-producing filler containing) acrylic bone cement. In addition, some signs of the semi-IPN structure were observed by SEM examination.  相似文献   

18.
An in vitro study was carried out in order to investigate the antibiotic release mechanism and the antibacterial properties of commercially (Palacos® R + G and Palacos® LV + G) and manually (Palacos® R + GM and Palacos® LV + GM) blended gentamicin-loaded bone cements.Samples were characterized by means of scanning electron microscopy (SEM) and compression strength was evaluated. The antibiotic release was investigated by dipping sample in simulated body fluid (SBF) and periodically analyzing the solution by means of high pressure liquid chromatography (HPLC). Different antibacterial tests were performed to investigate the possible influence of blending technique on antibacterial properties.Only some differences were observed between gentamicin manually added and commercial ones, in the release curves, while the antibacterial effect and the mechanical properties seem to not feel the blending technique.  相似文献   

19.
Tricalcium silicate (Ca3SiO5) cement, a novel self-setting biomaterial, has been shown to exhibit good hydraulic properties and excellent bioactivity. In this study, gentamicin sulfate (GS) was integrated into cement pastes and in vitro release of GS from the Ca3SiO5 cement was performed in deionized water, phosphate buffer saline (PBS) and HCl solutions with different pH at 37 °C, respectively. The results showed that the initial fast release of GS was restricted to a low level and prolonged release of drugs was achieved in water and PBS. The prolonged GS release is attributed to the interaction of GS with the calcium silicate hydrate network and the formation of unique nano-to-micro porous structure after hydration. Furthermore, GS release from milled powders of the hydrated cement suggested that the constrained GS could be released at low pH environment or during the degradation of the cement. When the samples were soaked in PBS, a nano-structured apatite layer was formed on the surface of the cement, which resulted in a relatively lower GS release rate as compared to that in water. The results suggest that Ca3SiO5 cement might be used as bioactive bone implant materials with drug loading and prolonged release properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号