首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A GaAs FET integrated oscillator stabilized with a BaO--TiO/sub 2/ system ceramic dielectric resonator provides a high-frequency-stabilized low-noise compact microwave power source. The newly developed ceramic has an expansion coefficient and dielectric constant temperature coefficient that offset each other and result in a small resonant frequency temperature coefficient. A stabilized oscillator output of 100 mW with a 17-percent efficiency and a frequency temperature coefficient as low as 2.3 ppm//spl deg/C are obtained at 6 GHz. FM noise level is reduced more the 30 dB by the stabilization. The dynamic properties of the oscillator and resonator are precisely measured to determine equivalent circuit representations. A large-signal design theory based on these equivalent circuit representations is presented to realize the optimal coupling condition between the oscillator and stabilizing resonator. The stabilized oscillator performance is sufficient for application to microwave communications systems.  相似文献   

2.
苏云  赵惠玲  蒋丹 《现代电子技术》2011,34(17):178-180
微波振荡器代表所有基本微波通信系统的能源来源。研究设计8.95GHz的低噪声砷化镓场效应管并联反馈介质谐振器振荡器,为了放大输出功率和提高负载牵引,在介质谐振器振荡器后一级加缓冲放大器,最终的输出功率是+13.33dBm。测试证明输出信号的相位噪声偏离中心频率100kHz可达-116.49dBc/Hz,偏离中心频率10kHz可达-91.74dBc/Hz。  相似文献   

3.
A simple low-cost and high-performance 22 GHz band down-converter developed for a direct-to-home satellite broadcasting system is discussed. The down-converter consists of a low-noise high electron mobility transistor (HEMT) preamplifier, an image recovery mixer with a particular structure using dielectric resonator filters, a 21.4 GHz GaAs FET oscillator stabilized by a dielectric resonator, and an IF amplifier. These components are fully integrating using microwave integrated circuit technology into a small size. A total noise figure of less than 2.8 dB is obtained over the 22.5-23.0 GHz frequency range. The local oscillator achieves a frequency variation of less than 600 kHzp-p over a temperature range of -20° to +60°C  相似文献   

4.
This paper describes the design and performance of a low noise multicarrier receiver for a 30/20 GHz single-conversion satellite transponder. To develop a low noise receiver the following areas were examined: 1) analysis of spurious signals, 2) selection of devices most suitable for use on board the satellite, and 3) level diagram tradeoff studies. The receiver consists of a 30 GHz low noise GaAs FET amplifier, a 30/20 GHz GaAs Schottky barrier diode mixer, a dielectric resonated local oscillator, a 20 GHz high gain GaAs FET amplifier, and a 20 GHz high power (0.5 W) GaAs FET amplifier. The receiver has an 8 dB noise figure and a 48 dB gain in the frequency range from 28.395 GHz to 29.015 GHz (620 MHz frequency bandwidth).  相似文献   

5.
A 25-GHz monolithic voltage controlled oscillator (VCO) has been designed and fabricated in a commercial InGaP/GaAs heterojunction bipolar transistor (HBT) process. This balanced VCO has a novel topology using a feedback /spl pi/-network and a common-emitter transistor configuration. Ultra-low phase noise is achieved: -106 dBc/Hz and -130 dBc/Hz at 100kHz and 1-MHz offset frequency, respectively. To the authors' knowledge, this is the lowest phase noise achieved in a monolithic microwave integrated circuit (MMIC) VCO at such high frequency. The single-ended output power is -1 dBm. It can be tuned between 25.33GHz and 25.75GHz using the base-collector junction capacitor of the HBT as a varactor. The dc power consumption is 90mW for a 9-V supply. An excellent figure-of-merit of -195 dBc/Hz is obtained.  相似文献   

6.
A monolithic X-band GaAs FET oscillator has been developed. Passive circuit components are lumped capacitors and inductors on semi-insulating GaAs; the chip size is 1.2 × 1.4 mm2. Stabilised with a Ba2Ti9O20 dielectric resonator, the oscillator delivers more than 30 mW output power at 10.8 GHz with a maximum chip efficiency of 20%. The frequency drift is better than 1 × 10?6/K from ?20°C to 80°C.  相似文献   

7.
A V-band 1/2 frequency divider is developed using harmonic injection-locked oscillator. The cross-coupled field effect transistors (FETs) and low quality-factor microstrip resonator are employed as a wide-band oscillator to extend the locking bandwidth. The second harmonic of free-running oscillation signal is injected to the gates of cross-coupled FETs for high-sensitivity superharmonic injection locking. The fabricated microwave monolithic integrated circuit frequency divider using 0.15-/spl mu/m GaAs pHEMT process showed a maximum locking range of 7.4 GHz (from 65.1 to 72.5 GHz) under a low power dissipation of 100 mW. The maximum single-ended output power was as high as -3 dBm.  相似文献   

8.
In this letter, we report that a commonly used 0.35-/spl mu/m, 60-GHz-F/sub MAX/ BiCMOS SiGe monolithic microwave integrated circuit (MMIC) technology is able to provide very low phase noise signal generation in the X-band frequency range. This statement has been demonstrated using a differential LC voltage-controlled oscillator (VCO) in which varactors are realized with metal-oxide semiconductor (MOS) transistors and inductors with a patterned ground shield technology. This VCO features an output power signal in the range of -5 dBm and exhibits a phase noise of -96 dBc/Hz at a frequency offset of 100kHz from carrier and -120 dBc/Hz at a frequency offset of 1 MHz. The VCO features a tuning range of 430 MHz or 4.3% of its operating frequency. Its power consumption is in the range of 70 mW (200 mW with buffers circuits) for a chip size of 800/spl times/1000 /spl mu/m/sup 2/ (including RF probe pads).  相似文献   

9.
A 2 V 1.8 GHz fully integrated CMOS dual-loop frequency synthesizer is designed in a standard 0.5 /spl mu/m digital CMOS process for wireless communication. The voltage-controlled oscillator (VCO) required for the low-frequency loop is designed using a ring-type VCO and achieves a tuning range of 89% from 356 to 931 MHz and a phase noise of -109.2 dBc/Hz at 600 kHz offset from 856 MHz. With an active chip area of 2000/spl times/1000 /spl mu/m/sup 2/ and at a 2 V supply voltage, the whole synthesizer achieves a tuning range from 1.8492 to 1.8698 GHz in 200 kHz steps with a measured phase noise of -112 dBc/Hz at 600 kHz offset from 1.86 GHz. The measured settling time is 128 /spl mu/s and the total power consumption is 95 mW.  相似文献   

10.
This paper addresses a fully‐integrated low phase noise X‐band oscillator fabricated using a carbon‐doped InGaP heterojunction bipolar transistor (HBT) GaAs process with a cutoff frequency of 53.2 GHz and maximum oscillation frequency of 70 GHz. The oscillator circuit consists of a negative resistance generating circuit with a base inductor, a resonating emitter circuit with a microstrip line, and a buffering resistive collector circuit with a tuning diode. The oscillator exhibits 4.33 dBm output power and achieves ?127.8 dBc/Hz phase noise at 100 kHz away from a 10.39 GHz oscillating frequency, which benchmarks the lowest reported phase noise achieved for a monolithic X‐band oscillator. The oscillator draws a 36 mA current from a 6.19 V supply with 47.1 MHz of frequency tuning range using a 4 V change. It occupies a 0.8 mm × 0.8 mm die area.  相似文献   

11.
A Ka-band monolithic microwave integrated circuit (MMIC) oscillator was implemented by using a coplanar waveguide photonic bandgap (PBG) resonator and a 0.1-/spl mu/m GaAs pseudomorphic high electron mobility transistor. A coplanar labyrinthine one-dimensional PBG resonator was used for reduction in MMIC size. The fabricated MMIC oscillator had an output power of 6.5dBm at 30.3GHz and a free-running phase noise of -80dBc/Hz at 100-kHz offset.  相似文献   

12.
A monolithic microwave FET oscillator built in GaAs is frequency-stabilised with temperature using a Schottky diode as a temperature sensor. The monolithic integrated circuit includes both the oscillator (f=7.44 GHz) and its temperature sensor. The actual performance gives a stabilisation of the frequency to better than 1 MHz in the temperature range from ?40 to +80°C.  相似文献   

13.
研制了一款低电调电压、多频段压控振荡器(VCO)微波单片集成电路(MMIC),MMIC主要由6频段振荡电路、控制电路、译码电路等组成。将10~20 GHz的频率范围分为6个频段覆盖,从而将电调电压控制在5 V以内。基于GaAs异质结双极晶体管(HBT) 2μm工艺对所设计的VCO进行了流片验证,芯片面积为3.4 mm×3.2 mm。测试结果表明,在室温下,当电源电压为5 V、电调电压在0~5 V时,每个频段VCO可覆盖的频率为9.58~11.6 GHz、11.06~13.23 GHz、12.77~14.89 GHz、14.21~16.48 GHz、16~18.48 GHz和17.7~20.17 GHz;当电调电压为2.5 V、频偏为100 kHz时,每个频段VCO的相位噪声分别为-91.8、-90.5、-90.3、-90、-88.2和-87.1 dBc/Hz。因此,该6频段VCO覆盖了10~20 GHz的频率范围,且每段VCO的相位噪声指标良好,可满足低压电子系统的应用需求。  相似文献   

14.
In the microwave solid-state oscillators using bulk effect and avalanche diodes, high dielectric constant ceramics have been used as a temperature compensator and excellent temperature stability is obtained. An X-band avalanche diode oscillator is tested over a wide temperature range. The frequency drift is improved to be less than +30 kHz//spl deg/C. Additional advantages of this technique are compact size and low cost.  相似文献   

15.
描述了一种高性能简易微波VCO器件的设计和实验。该器件基于负阻原理设计,利用微波FET和变容二极管等分立元件制作,具有高性价比的特点。设计过程中利用ADS软件进行电路的匹配和优化,通过合适的外电路设计对变容二极管VCO的调频线性度进行改善,同时,降低了VCO的相位噪声。实际电路的测试结果表明,当该VCO的中心频率为4.3GHz时,其调谐范围大于200MHz,输出功率大于5.2dBm,相位噪声优于-112dBc/Hz@1MHz和-83dBc/Hz@100kHz。  相似文献   

16.
基于中科院微电子所的AlGaN/GaN HEMT工艺研制了一个X波段高功率混合集成压控振荡器(VCO)。电路采用源端调谐的负阻型结构,主谐振腔由开路微带和短路微带并联构成,实现高Q值设计。在偏置条件为VD=20V, VG=-1.9V, ID=150mA时,VCO在中心频率8.15 GHz处输出功率达到28 dBm,效率21%,相位噪声-85 dBc/Hz@100 KHz,-128 dBc/Hz@1 MHz。调谐电压0~5V时,调谐范围50 MHz。分析了器件闪烁噪声对GaN HEMT基振荡器相位噪声性能的主导作用。测试结果显示了AlGaN/GaN HEMT工艺在高功率低噪声微波频率源中的应用前景。  相似文献   

17.
An X-band IMPATT oscillator having a stabilized output power of over 0.5 watt has been developed. The oscillator consists of a main cavity and a directly coupled reaction-type cavity for stabilization. The oscillator has a frequency stability of 2.6x10/sup -5/ over a temperature variation ranging from 0/spl deg/ to 50/spl deg/C and an rms noise deviation of 15 Hz/1-kHz bandwidth at 500 kHz from the carrier. Design considerations have been made concerning the admittance characteristics of the circuit and of the diode to determine preferable circuit conditions for stabilization. The output-power loss due to the stabilization is as small as 0.4 dB. The oscillator is capable of operation in a frequency range of 10.7 to 11.7 GHz.  相似文献   

18.
A high power X-band hybrid microwave integrated voltage controlled oscillator(VCO) based on Al-GaN /GaN HEMT is presented.The oscillator design utilizes a common-gate negative resistance structure with open and short-circuit stub microstrip lines as the main resonator for a high Q factor.The VCO operating at 20 V drain bias and-1.9 V gate bias exhibits an output power of 28 dBm at the center frequency of 8.15 GHz with an efficiency of 21%.Phase noise is estimated to be -85 dBc/Hz at 100 kHz offset and -1...  相似文献   

19.
基于高次谐波体声波谐振器(HBAR)的高品质因数(Q)值和多模谐振特性,设计了Colpitts和Pierce两种形式的微波振荡器。采用HBAR与LC元件组成谐振回路的方法,与放大电路构成反馈环路直接基频输出微波频段信号。Colpitts振荡器输出信号频率为980 MHz,信号输出功率为-4.92dBm,信号相位噪声达-119.64dBc/Hz@10kHz;Pierce振荡电路输出信号频率达到2.962GHz,信号输出功率为-9.77dBm,信号相位噪声达-112.30dBc/Hz@10kHz。  相似文献   

20.
The design considerations, fabrication process, and performance of the first K-Ka-band oscillator implemented using a self-aligned AlGaAs/GaAs heterojunction bipolar transistor (HBT) are described. A large-signal time-domain-based design approach has been used which applies a SPICE-F simulator for optimization of the oscillator circuit parameters for maximum output power. The oscillator employs a 2×10-μm2 emitter AlGaAs/GaAs HBT that was fabricated using a pattern inversion technology. The HBT has a base current 1/f noise power density lower than 1×10-20 A2/Hz at 1 kHz and lower than 1×10-22 A/2/Hz at 100 kHz for a collector current of 1 mA. The oscillator, which is composed of only low-Q microstrip transmission lines, has a phase noise of -80 dBc/Hz at 100 kHz off carrier when operated at 26.6 GHz. These results indicate the applicability of the HBTs to low-phase-noise monolithic oscillators at microwave and millimeter-wave frequencies, where both Si bipolar transistors and GaAs FETs are absent  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号