首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1-D mesoporous TiO2 nanotube (TNT) with large BET surface area was successfully synthesized by a hydrothermal-calcination process, and employed for simultaneous photocatalytic H2 production and Cu2+ removal from water. Cu2+, across a wide concentration range of 8-800 ppm, was removed rapidly from water under irradiation. The removed Cu2+ then combined with TNT to produce efficient Cu incorporated TNT (Cu-TNT) photocatalyst for H2 production. Average H2 generation rate recorded across a 4 h reaction was between 15.7 and 40.2 mmol h−1 g−1catalyst, depending on initial Cu2+/Ti ratio in solution, which was optimized at 10 atom%. In addition, reduction process of Cu2+ was also a critical factor in governing H2 evolution. In comparison with P25, its large surface area and 1-D tubular structure endowed TNT with higher photocatalytic activity in both Cu2+ removal and H2 production.  相似文献   

2.
One-dimensional (1D) Pt/TiO2 hybrid nanofibers (HNFs) with different concentrations of Pt were fabricated by a facile two-step synthesis route combining an electrospinning technique and calcination process. X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) results showed that the Pt nanoparticles (NPs) with the size of 5–10 nm were well dispersed in the TiO2 nanofibers (NFs). Further investigations from the UV–Vis diffuse reflectance (DR) and X-ray photoelectron spectroscopy (XPS) analysis revealed that some Pt ions were incorporated into the TiO2 lattice as Pt4+ state, which contributed to the visible light absorption of TiO2 NFs. Meanwhile, the Pt2+ ions existing on the surface of Pt NPs resulted in the formation of Pt–O–Ti bond at Pt NPs/TiO2 NFs interfaces that might serve as an effective channel for improving the charge transfer. The as-electrospun Pt/TiO2 HNFs exhibited remarkable activities for photocatalytic H2 evolution under visible light irradiation in the presence of l-ascorbic acid as the sacrificial agent. In particular, the optimal HNFs containing 1.0 at% Pt showed the H2 evolution rate of 2.91 μmol h−1 and apparent quantum efficiency of 0.04% at 420 nm by using only 5 mg of photocatalysts. The higher photocatalytic activity could be ascribed to the appropriate amount of Pt ions doping and excellent electron-sink effect of Pt NPs co-catalysts.  相似文献   

3.
Low cost semiconductor photocatalysts that can efficiently harvest solar energy to generate H2 from water or biofuels will be critical to future hydrogen economies. In this study, low cost CuO/TiO2 photocatalysts (CuO loadings 0–15 wt.%) were prepared, characterized and evaluated for H2 production from ethanol–water mixtures (80 vol.% ethanol, 20 vol.% H2O) under UV excitation. TEM, XRF, EDAX, EPR, Raman, TGA, XPS and Cu L-edge NEXAFS data showed that at CuO loadings <5 wt.%, Cu(II) was highly dispersed over the TiO2 support, possibly as a sub-monolayer CuO species. At higher loadings, CuO crystallites of diameter 1–2 nm were identified. The photocatalytic activity of CuO/TiO2 photocatalysts was highly dependent on the CuO loading, with 1.25 wt.% CuO being optimal (H2 production rate = 20.3 mmol g−1 h−1). Results suggest that sub-monolayer coverages of Cu(II) or CuO on TiO2 are highly beneficial for H2 generation from ethanol–water mixtures and support the development of a sustainable H2 economy.  相似文献   

4.
Robust Gd–La codoped TiO2 microspheres with diameter of 2∼3 μm were successfully synthesized via a hydrothermal method using poly(ethylene glycol)-block–poly(propylene glycol)-block–poly(ethylene glycol) as a template. The photocatalytic activity of the Gd–La codoped TiO2 microspheres evaluated by photodegrading methyl orange (MO) has been significantly enhanced compared to that of undoped TiO2 microspheres. Ti4+ may substitute for La3+ and Gd3+ in the lattices of rare earth oxides to create abundant oxygen vacancies and surface defects for electron trapping and dye adsorption, accelerating the separation of photogenerated electron–hole pairs and MO photodegradation. The formation of an exciton energy level below the conduction band of TiO2 from the binding of electrons and oxygen vacancies decreases the excitation energy of Gd–La codoped TiO2 microspheres, resulting in robust photocatalysts. The results suggest that Gd–La codoped TiO2 microspheres calcined at 350 °C are very promising for enhancing the photocatalytic activity of photocatalysts.  相似文献   

5.
Fe3+ doped TiO2 photocatalysts were prepared by hydrothermal treatment for the photocatalytic water splitting to produce stoichiometric hydrogen and oxygen under visible light irradiation. It was found that hydrothermal treatment at 110 °C for 10 h was essential for the synthesis of highly stabilized Fe3+ doped TiO2 photocatalysts. The synthesized photocatalysts were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS) and BET surface area techniques. The doping of highly stabilized Fe3+ in the titania matrix leads to significant red shift of optical response towards visible light owing to the reduced band gap energy. Optimum amount of Fe3+ doped TiO2, 1.0 wt% Fe/TiO2, showed drastically improved hydrogen production performance of 12.5 μmol-H2/h in aqueous methanol and 1.8 μmol-H2/h in pure water, respectively. This Fe/TiO2 photocatalyst was stable for 36 h without significant deactivation in the water splitting reaction.  相似文献   

6.
Hydrogen production from water using solar light energy is a significant contribution to green renewable energy economy. Separation of water splitting products is essential for this and approached by creating membrane photocatalytic system (MPS) without macroscopic metallic electrodes. The MPS has a layered structure Pt/chemically loaded TiO2/filtration loaded TiO2/porous polymer membrane/support. Influence of MPS preparation conditions on its TiO2 content, permeability, diffuse reflectance spectra, mechanical stability, Pt loading and membrane morphology was investigated. Chemical bath deposition of TiO2 followed by aging was found to be essential for mechanical stability and high activity in hydrogen production. Loading TiO2 by filtration alone is ineffective for achieving low permeability. The detected products of ethanol dehydrogenation in gas phase were H2, CO2, CH4 and C2H6 and in liquid phase CH3COOH and CH3CHO. Optimum mass of TiO2 and photodeposited Pt were found for high rate of H2 generation. The highest quantum efficiency of H2 production was 13%.  相似文献   

7.
The influence of redox-treated Pt/TiO2 photocatalysts on H2 production is investigated. Catalyst characterizations are performed by TEM, XPS, XRD, BET, and UV–vis/DR spectroscopy techniques. In terms of production rate, the oxidation treatment shows higher reactivity than the reduction treatment. The reduction treatment allows the formation of metallic Pt(0), which more easily catalyzes the transition of TiO2 from the anatase to the rutile phases. Reduction-treated Pt/TiO2 photocatalysts have lower SBET values than oxidation-treated Pt/TiO2 photocatalysts due to the higher percentage of TiO2 in the rutile phase. Combining the results of XPS and optical analyses, PtO/TiO2 shows a higher energy band gap than metallic Pt(0)/TiO2, indicating that oxidation-treated Pt/TiO2 is more capable of achieving water splitting for H2 production. According to the results of this study, the oxidation treatment of Pt/TiO2 photocatalysts can significantly enhance the reactivity of photocatalytic H2 production because of their homogenous distribution, lower phase transition, higher SBET, and higher energy band gap.  相似文献   

8.
Mesoporous-assembled TiO2 nanocrystals with very high photocatalytic H2 production activity were synthesized through a modified sol-gel process with the aid of urea as mesopore-directing agent, heat-treated under various calcination temperatures, and assessed for their photocatalytic H2 production activity via water splitting reaction. The resulting mesoporous-assembled TiO2 nanocrystals were systematically characterized by N2 adsorption-desorption analysis, surface area and pore size distribution analyses, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The experimental results showed that the photocatalytic H2 production activity of the synthesized mesoporous-assembled TiO2 nanocrystal calcined at 500 °C, which possessed very narrow pore size distribution, was extraordinarily higher than that of the commercially available P-25 TiO2 and ST-01 TiO2 powders.  相似文献   

9.
In order to sensitize TiO2 in visible light and to reduce photo-induced charge recombination, the multilayer films of Indium-Tin Oxide (ITO)/V-doped TiO2 were synthesized by radio-frequency magnetron sputtering. V-doped TiO2 thin films showed red shift in TiO2 absorption edge with increasing dopant concentration and, most importantly, the dopant energy levels are formed in the TiO2 band gap due to V5+/V4+ ions as confirmed by UV-Visible and XPS spectra. Multilayer films with different numbers of ITO/V-doped TiO2 (6 at.%) bilayers (namely, 2-, 3-, 4-, 5-, 6- and 7-bilayers) were deposited, in order to reduce the charge recombination rate, by keeping the total thickness of TiO2 constant in each multilayer film. In multilayer films, when exposed to visible light the photocurrent increases as function of the number of bilayers by reaching the maximum with 6-bilayers of ITO/V-doped TiO2. The measured enhanced photocurrent is attributed to: 1) ability of V-doped TiO2 to absorb visible light, 2) number of space-charge layers in form of ITO/TiO2 interfaces in multilayer films, and 3) generation of photoelectrons just in/or near to the space-charge layer by decreasing the V-doped TiO2 layer thickness. The reduced charge recombination rate in multilayer films was also confirmed by the photocurrent kinetic curves. The superior photocatalytic efficiency of the 6-bilayers film is also reflected in hydrogen production rate through water-splitting: we obtained indeed 31.2 μmol/h of H2 production rate.  相似文献   

10.
Highly dispersed CuO was introduced into TiO2 nanotube (TNT) made by hydrothermal method via adsorption-calcination process or wet impregnation process, to fabricate CuO incorporated TNT photocatalysts (CuO-TNT) for hydrogen production. It was found that CuO-TNT possessed excellent hydrogen generation activity, which was constantly vigorous throughout 5 h reaction. Depending on the preparation method, hydrogen evolution rates over CuO-TNT were founded in the range of 64.2-71.6 mmol h−1 g−1catalyst, which was much higher than the benchmark P25 based photocatalysts, and even superior to some Pt/Ni incorporated TNT. This high photocatalytic activity of CuO-TNT was mainly attributed to the unique 1-D tubular structure, large BET surface area and high dispersion of copper component. Compared to wet impregnation, adsorption-calcination process was superior to produce active photocatalyst, since it was prone to produce photocatalyst with more highly dispersed CuO.  相似文献   

11.
Metal oxide compounds containing bismuth are considered as potential candidates for photocatalysis in both contaminant degradation and H2 generation, due to the interesting lone electron pairs and the band gap narrowing effect of Bi3+. Quaternary perovskite oxide Bi0.5Na0.5TiO3 was thus synthesized at low temperature via a soft chemical route. The influence of alkaline concentrations on the structure, morphology, and optical properties of the samples has been systematically investigated. All samples existed as hierarchical microspheres, which are consisted of cubic nanocrystallines. For the first time, the photocatalytic water splitting for H2 evolution over Bi0.5Na0.5TiO3 has been studied. A high H2 evolution rate of 325.4 μmol h−1 g cat−1 under the irradiation of a 500 W xenon lamp was obtained. More importantly, no decrease in the catalytic performance was observed after three consecutive runs of 15 h, suggesting new possibility in designing multi-component photocatalysts for future applications.  相似文献   

12.
Efficient Cu incorporated TiO2 (Cu–TiO2) photocatalysts for hydrogen generation were fabricated by four methods: in situ sol–gel, wet impregnation, chemical reduction of Cu salt, and in situ photo-deposition. All prepared samples are characterized by good dispersion of Cu components, and excellent light absorption ability. Depending on the preparation process, hydrogen generation rates of the as-prepared Cu–TiO2 were recorded in the range of 9–20 mmol h−1 gcatalyst−1, which were even more superior to some noble metal (Pt/Au) loaded TiO2. The various fabrication methods led to different chemical states of Cu, as well as different distribution ratio of Cu between surface and bulk phases of the photocatalyst. Both factors have been proven to influence photocatalytic hydrogen generation. In addition, the Cu content in the photocatalyst played a significant role in hydrogen generation. Among the four photocatalysts, the sample that was synthesized by in situ sol–gel method exhibited the highest stability. High efficiency, low cost, good stability are some of the merits that underline the promising potential of Cu–TiO2 in photocatalytic hydrogen generation.  相似文献   

13.
Glycerol is the main by-product during the trans-esterification of vegetable oils to biodiesel. In this study, we investigate the process of photocatalytic hydrogen production from glycerol aqueous solution, with the use of cobalt doped TiO2 photocatalyst under solar light irradiation. Cobalt doped TiO2 photocatalysts are prepared by impregnation method and these catalysts are characterized by XRD, EDAX, DRS, TEM, EPR and XPS techniques. DRS studies clearly show the expanded photo response of TiO2 into visible region on impregnation of Co2+ ions on surface of TiO2. XPS studies also show change in the binding energy values of O1s, Ti 2p and Co 2p, indicating that Co2+ ions are in interaction with TiO2. Maximum hydrogen production of 220 μ mol h−1 g−1 is observed on 2 wt% cobalt doped TiO2 catalysts in pure water under solar irradiation. A significant improvement in hydrogen production is observed in glycerol: water mixtures; and maximum hydrogen production of 11,021 μ mol h−1 g−1 is obtained over 1 wt% cobalt doped TiO2 in 5% glycerol aqueous solutions. Furthermore, to evaluate some reaction parameters such as cobalt wt% on TiO2, glycerol concentration, substrate effect (alcohols) and pH of the solution on the hydrogen production activity are systematically investigated. When the catalysts are examined under UV irradiation, a 3–4 fold increase in activity is observed where this activity seems to decrease with time; however, a continuous activity is observed under solar irradiation on these catalysts. The decreased activity could be ascribed the loss of cobalt ions under UV irradiation, as evidenced by EDAX and TEM analysis. A possible explanation for the stable and continuous activity of cobalt doped TiO2 photocatalysts under solar irradiation is proposed.  相似文献   

14.
AgIn5S8 and AgIn5S8/TiO2 heterojunction nanocomposite with efficient photoactivity for H2 production were prepared by a low-temperature water bath deposition process. The resultant AgIn5S8 shows an absorption edge at ∼720 nm, corresponding to a bandgap of ∼1.72 eV, and its visible-light-driven photoactivity (100.1 μmol h−1) for H2 evolution is 9 times higher than that (11 μmol h−1) of the product derived from a hydrothermal process, while the obtained AgIn5S8/TiO2 heterojunction nanocomposites prepared by using commercially available TiO2 nanoparticles (P25) as TiO2 source exhibit remarkably improved photoactivity as compared to the pristine AgIn5S8, and the AgIn5S8/TiO2 nanocomposite with molar ratio of 1:10 shows a maximum photocatalytic H2 evolution rate (371.1 μmol h−1), which is 4.3 times higher than that (85 μmol h−1) of the corresponding AgIn5S8/TiO2 nanocomposite derived from a hydrothermal method. This significant enhancement in the photocatativity of the present AgIn5S8/TiO2 nanocomposite can be ascribed to the better dispersion of the AgIn5S8 formed on TiO2 nanoparticle surfaces and the more intimate AgIn5S8/TiO2 heterojunction structure during the water bath deposition process under continuously stirring as compared to the corresponding nanocomposite derived from a hydrothermal method. This configuration of nanocomposite results in fast diffusion of the photogenerated carriers in AgIn5S8 towards TiO2, which is beneficial for separating spatially the photogenerated carriers and improving the photoactivity. The present findings shed light on the tuning strategy of spectral responsive region and photoactivity of photocatalysts for efficient light-to-energy conversion.  相似文献   

15.
Innovative TiO2/SnO2 nanofibers were fabricated via electrospinning an innovated precursor solution and used for photocatalytic H2 generation. The nanofibers exhibited greatly enhanced H2 evolution rate compared to bare TiO2 nanofiber and P25. The enhanced efficiency of the TiO2/SnO2 nanofibers was attributed to its excellent synergistic properties: (1) its good mesoporosity; (2) the red-shift of absorbance spectra to enhance light absorbance capability; (3) its long nanofibrous structure and (4) anatase TiO2 – rutile TiO2 – rutile SnO2 ternary junctions favorable for the separation of electrons and holes. Based on our experimental results, the optimum ratio of TiO2/SnO2 nanofibers with 3% Sn demonstrated the highest efficiency in H2 generation.  相似文献   

16.
Mesoporous ZrO2-modified coupled ZnO/TiO2 nanocomposites were prepared by a surfactant assisted sol–gel method. The photocatalytic performance of these materials was investigated for H2 evolution without noble metal co-catalyst using aqueous methanol media under AM1.5 simulated light. The H2 evolution was compared with coupled ZnO/TiO2, TiO2, ZnO and Degussa P25. The ZrO2-modified nanocomposites exhibited higher H2 generation, specifically 0.5 wt.% ZrO2 loading produced 30.78 mmol H2 g−1 compared to 3.55 mmol H2 g−1 obtained with coupled ZnO/TiO2. A multiple absorbance thresholds at 435 nm and 417 nm were observed with 0.5 wt.% ZrO2 loading, corresponding to 2.85 eV and 2.97 eV band gap energies. The high surface area, large pore volume, uniform crystallite sizes and enhanced light harvesting observed in ZrO2-modified nanocomposites were contributing factors for effective charge separation and higher H2 production. The possible mechanism of H2 generation from aqueous methanol solution over ZrO2-modified nanocomposite is presented.  相似文献   

17.
Photocatalytic hydrogen production from water or organic compounds is a promising way to resolve our energy crisis and environmental problems in the near future. Over the past decades, many photocatalysts have been developed for solar water splitting. However, most of these photocatalysts require cocatalyst to facilitate H2 evolution reaction and noble metals as key cocatalysts are widely used. Consequently, the condition of noble metal cocatalyst including the size and valence state etc plays the key role in such photocatalytic system. Here, the size and valence state effect of Pt on photocatalytic H2 evolution over platinized TiO2 photocatalyst were studied for the first time. Surprisingly, it was found that Pt particle size does not affect the photoreaction rate with the size range of several nanometers in this work, while it is mainly depended on the valence state of Pt particles. Typically, TOFs of TiO2 photodeposited with 0.1–0.2 wt% Pt can exceed 3000 h−1.  相似文献   

18.
The photocatalytic hydrogen production from aqueous methanol solution was investigated with ZnO/TiO2, SnO/TiO2, CuO/TiO2, Al2O3/TiO2 and CuO/Al2O3/TiO2 nanocomposites. A mechanical mixing method, followed by the solid-state reaction at elevated temperature, was used for the preparation of nanocomposite photocatalyst. Among these nanocomposite photocatalysts, the maximal photocatalytic hydrogen production was observed with CuO/Al2O3/TiO2 nanocomposites. A variety of components of CuO/Al2O3/TiO2 photocatalysts were tested for the enhancement of H2 formation. The optimal component was 0.2 wt% CuO/0.3 wt% Al2O3/TiO2. The activity exhibited approximately tenfold enhancement at the optimum loading, compared with that with pure P-25 TiO2. Nano-sized TiO2 photocatalytic hydrogen technology has great potential for low-cost, environmentally friendly solar-hydrogen production to support the future hydrogen economy.  相似文献   

19.
In this study, TiO2 photocatalysts with nickel sulfide cocatalyst are prepared by loading nickel sulfide on TiO2 with solvothermal synthesis approach. The materials were prepared by glycol solvothermal method using anatase, nickel nitrate, thiourea as precursor. The prepared catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS), and X-ray photoelectron spectroscopy (XPS). This is the first time to report that NiS is used as a cocatalyst with TiO2 for the photocatalytic production of H2. The results revealed that the structure and the amount of the cocatalyst loaded on TiO2 play important roles in the photocatalytic activity of NiS/TiO2 composite. The maximum evolution of H2 was obtained when NiS had hexagonal structure with content in the composite of 7 at% in relation to TiO2. The rate of H2 evolution was increased up to about 30 times than that of TiO2 alone.  相似文献   

20.
Photocatalysts CuS/TiO2 for hydrogen production were synthesized by hydrothermal method at high temperature and characterized by XRD, UV–visible DRS, XPS, EDX, SEM and TEM. When TiO2 was loaded with CuS, it showed photocatalytic activities for water decomposition to hydrogen in methanol aqueous solution under 500 W Xe lamp. Among the photocatalysts with various compositions, the one with 1 wt% CuS-loaded TiO2 showed the maximum photocatalytic activity for water splitting, which indicated CuS could improve the separation ratio of photoexcited electrons and holes. What's more, the amounts of the produced hydrogen was about 570 μmol h−1, which had exceeded pure titania (P25) 32 times. In the present paper, it is proven that CuS can act as an effective co-catalyst to enhance the photocatalytic H2 production activity of TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号