首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fracture toughness and behaviour of COMRAL-85TM, a 6061 aluminium–magnesium–silicon alloy reinforced with 20 vol% Al2O3-based polycrystalline ceramic microspheres, and manufactured by a liquid metallurgy route, have been investigated. Fracture toughness tests were performed using short rod and short bar (chevron-notch) specimens machined from extruded 19 mm diameter rod, heat treated to the T6 condition. The fracture toughness in the R–L orientation was found to be lower than in the C–R or L–R orientations owing to the presence of particle-free bands in the extrusion direction. Short rod tests were also conducted for the R–L orientation on six powder metallurgy composites with particle volume fractions ranging between 5% and 30%. It was found that the fracture toughness decreased progressively with particle volume fraction, but at a decreasing rate. A detailed examination of the fracture behaviour was made for both the liquid metallurgy and powder metallurgy processed composites.  相似文献   

2.
The high-cycle stress-life (SN) curve and fatigue crack growth threshold (ΔKth) behaviour of COMRAL-85TM, a 6061 aluminium–magnesium–silicon alloy reinforced with 20 vol.% Al2O3-based polycrystalline ceramic microspheres, and manufactured by a liquid metallurgy route, have been investigated for a stress ratio of R = −1 (fully reversed loading). Fatigue testing was conducted on both smooth round bar (SN) specimens and notched round bar (fatigue threshold) specimens. Unreinforced Al 6061-T6 also processed by a liquid metallurgy route and six powder metallurgy processed composites with particle volume fractions ranging between 5% and 30% were also studied. SN data revealed that the powder metallurgy processed composites generally gave longer fatigue lives than the matrix alloy, whereas COMRAL-85TM exhibited a reduced fatigue life. The fatigue threshold results were very similar for all the composites, being lower than for Al 6061-T6. Fatigue failure mechanisms were determined from examination of the fracture surfaces and the crack profiles.  相似文献   

3.
Multilayer graphene (MLG) shows an attractive prospect for the demanding engineering applications. This paper reports the mechanical and tribological properties of MLG reinforced Ni3Al matrix composites (NMCs) under dry sliding at varying sliding speed. The hardness and elastic modulus of the NMCs are significantly influenced with MLG content. It is found that the hardness and elastic modulus of the NMCs are found to be increased by increasing MLG content up to 1.0 wt.%, while decreased when MLG content is above 1.0 wt.%. Tribological experiments suggest that MLG can dramatically improve the wear resistance and decrease the friction coefficient of the NMCs. Such marked improvement of wear resistance is attributed to the reinforcing mechanisms of MLG, such as crack deflection and pull-out, and reduction of friction coefficient is related to the formation of a tribofilm on the sliding contact surface.  相似文献   

4.
Due to a high propensity of nano-particles to agglomerate, making aluminium matrix composites with a uniform dispersion of the nano-particles using liquid routes is an exceptionally difficult task. In this study, an innovative approach was utilised to prevent agglomeration of nano-particle by encapsulating SiC nano-particles using graphene sheets during ball milling. Subsequently, the milled mixture was incorporated into A356 molten alloy using non-contact ultrasonic vibration method. Two different shapes for graphene sheets were characterised using HRTEM, including onion-like shells encapsulating SiC particles and disk-shaped graphene nanosheets. This resulted in 45% and 84% improvement in yield strength and tensile ductility, respectively. The former was ascribed to the Orowan strengthening mechanism, while the latter is due primarily to the fiber pull-out mechanism, brought about by the alteration of the solidification mechanism from particle pushing to particle engulfment during solidification as a consequence of high thermal conductive graphene sheets encapsulating SiC particles.  相似文献   

5.
Few papers have discussed the friction stir welding (FSW) of particulate reinforced aluminium matrix composites and most of them focused on the set-up of the welding process parameters and their effect on microstructure, hardness and tensile behaviour. The aim of this study was to investigate the fatigue resistance of FSW joints on an as-cast particulate reinforced aluminium based composite (AA6061/22 vol.%/Al2O3p). The welding process was performed using different process parameters, also investigating their effect on joint microstructure. The mechanical properties of the FSW composites were compared with those of the base material and the results were correlated to the microstructural modifications induced by the FSW process on the aluminium alloy matrix and the ceramic reinforcement. FSW reduced the size of both particle reinforcement and aluminium grains, and also led to a significant increase in interparticle matrix microhardness, for all process parameters. The FSW specimens belonging to a different set of parameters, tested without any post-weld heat treatment, exhibited a very high joint efficiency (ranging from 90% to 99%) with respect to the ultimate tensile strength of the base material. The stress controlled fatigue test showed a high spread both for the base and FSW composites. Statistical analysis disclosed that all FSW specimens belonging to different process parameters showed apparently slightly worse fatigue behaviour than that of the base composite. Statistical processing applied to the different welding parameters revealed that all the welded specimens belonged to the same population. Therefore it can be concluded that the parameters used produced joints with similar microstructure and comparable fatigue behaviour. The slight difference in the fatigue behaviour of the FSW specimens whose process parameters differed form those of the unwelded composite was explained by the different microstructural homogeneity in the transition from the base to the FSW zone.  相似文献   

6.
The matrix grain size plays a dual role in metal matrix composites (MMCs). Contrary to enhance the strength of matrix, grain refinement can weaken the thermal expansion mismatch strengthening induced by the reinforcement. In this article, a dislocation density based model is developed to describe the factors affecting the strengthening mechanisms in Carbon nanotube (CNT)-reinforced MMCs with different matrix grain sizes. Two kinds of thermal expansion mismatch strengthening mechanisms are considered, i.e., geometrically necessary dislocations (GNDs) are distributed in entire matrix and GNDs are limited in dislocation punched zones (DPZs). In addition, comparisons between the predictions and some available experimental results are also performed.  相似文献   

7.
The effect of ultrasonic vibration on the solderability of a 30 vol% Al2O3 reinforced Al-Cu alloy matrix composite in an air atmosphere was investigated. The results showed ultrasonic vibration gave the liquid filler an excellent ability to spread on the non-wetting base metal in both drop formation and soldering tests. Wetting was improved by removing the oxide film from the base metal, during which previous diffusion of the filler elements in the composite material producing partial melting played an important role. The joint strength increased significantly with soldering time, reaching a value equal to that of the filler metal after 3 s of ultrasonic vibration. The use of ultrasonic soldering is a possible solution to the problems in joining aluminum alloys highly reinforced with ceramic particles.  相似文献   

8.
The microstructure and mechanical properties of joints conducted by friction stir welding, FSW, at different rotational speeds in thick plates of a composite material with a high volume fraction of reinforcement, namely 2124Al/25vol%SiCp, are studied. Original particle-free regions vanish during the stirring process, leading to a homogeneous particle distribution. Occasional breakage of some large particles occurs. Tunnel defects appear at low rpm, and disappear at high rotational speeds. The size of the thermo mechanically affected zone, TMAZ, increases with increasing rpm. Ductility of the welds in the range of 10–15% is achieved in compression tests whereas a rather brittle behavior is obtained in tension. A strength difference, SD, effect between compression and tensile test is obtained. This accounts for the little detrimental effect of the FSW process on the matrix–reinforcement interface. The SD effect is attributed to the presence of a microscopic residual stress.  相似文献   

9.
Microstructure and mechanical properties of aluminum alloy 2024 (Al2024)/few-layer graphene (FLG) composites produced by ball milling and hot rolling have been investigated. The presence of dispersed FLGs with high specific surface area significantly increases the strength of the composites. The composite containing 0.7 vol.% FLGs exhibits tensile strength of 700 MPa, two times higher than that of monolithic Al2024, and around 4% elongation to failure. During plastic deformation, restricted dislocation activities and the accumulated dislocation at between FLGs may contribute to strengthening of Al2024/FLG composites.  相似文献   

10.
The effect of carbon nanotubes on the thermal stability of ultrafine grained aluminium alloy processed by the consolidation of nano-powders obtained by mechanical alloying was evaluated via measurements of grain size and mechanical property changes upon annealing at various temperatures. It was found that the grain size of the samples containing carbon nanotubes is stable up to high temperatures and even after annealing at 450 °C (0.7Tm) no evident grain growth was observed. The limited grain boundary migration was attributed to the presence of entangled networks of carbon nanotubes located at grain boundaries and to the formation of nanoscale particles of aluminium carbide Al4C3. It was also revealed that carbon nanotubes decompose at a relatively low temperature of 450 °C and form fine Al4C3 precipitates. This transformation does not significantly affect the mechanical properties due to the nanoscale size of the carbides.  相似文献   

11.
This study is concerned with the influence of Nickel, as reinforcement, in an aluminum–silicon (AlSi) alloy when regarding wear behavior. For these composites, the effect of Ni content, in the tribopair performance, was evaluated. For this purpose, the pin but also the counterface wear behavior was analyzed.Nickel particulate reinforced aluminum–silicon (AlSi) composites, with 5, 12.5 and 20 wt.% Ni were produced by a hot-pressing route. Microstructural characterization showed a uniform distribution of the Ni particulates in the AlSi matrix. EDS and XRD analyses revealed that the particle/matrix interface was formed by Al3Ni intermetallic. Reciprocating pin-on-plate wear tests were performed with AlSi and AlSi–Ni pins against a gray cast iron (GCI) counterface. It was observed that the wear behavior of the AlSi–Ni/GCI tribopair is improved when compared with the AlSi/GCI system.  相似文献   

12.
Light metal matrix composites are of great interest due to their potential for reducing CO2 emission through lightweight design e.g. in the automotive sector. Carbon nanotubes can be considered as ideal reinforcements, due to their high strength, high aspect ratio and thermo-mechanic properties. In this research, CNT reinforced light metal composites were produced by melt stirring and by high pressure die casting, which can be both easily scaled up. The light metal composites showed significantly improved mechanical properties already at small CNT contents. The influence of CNT concentration on the composites was also studied.  相似文献   

13.
Micro-structural characterization of the composites has revealed fairly uniform distribution and some amount of grain refinement in the specimens. Further, it was observed that the micro-hardness improve when increasing the milling time and the reinforcement content due to presence of hard Al2O3 particles. Was also observed a low wear rate exhibited by the Al/Al2O3/Gr hybrid composites due to presence of Al2O3 and Gr which they acted as load bearing elements and solid lubricant respectively. The observed wear rate and micro-hardness have been correlated with microstructural analyses.  相似文献   

14.
The compressive behaviour of eight different metal matrix syntactic foams (MMSFs) are investigated and presented. The results showed that the engineering factors as chemical compositions of the matrix material, the size of the microballoons, the previously applied heat treatment and the temperature of the compression tests have significant effects on the compressive properties. The smaller microballoons with thinner wall ensured higher compressive strength due to their more flawless microstructure and better mechanical stability. According to the heat treatments, the T6 treatments were less effective than expected; the parameters of the treatment should be further optimised. The elevated temperature tests revealed ∼30% drop in the compressive strength. However, the strength remained high enough for structural applications; therefore MMSFs are good choices for light structural parts working at elevated or room temperature. The chemical composition - microballoon type - heat treatment combinations give good potential for tailoring the compressive characteristics of MMSFs.  相似文献   

15.
Microstructure evolution of vapour-grown carbon nanofibre (VGCF)-reinforced aluminium matrix composites during fabrication and microstructure–property relationships of these materials were studied. Composites were fabricated using powder metallurgy, i.e. by mixing VGCFs and aluminium powder via ball-milling followed by sintering or hot extrusion. The mixing condition was selected to achieve small powder particle size and homogeneously dispersed VGCFs. Aluminium grains and VGCFs were elongated along the longitudinal direction of aluminium particles in the mixed powder. Detailed observation of the aluminium grains in the composites found grain size and morphology dominated by recrystallization. Apparently, grain growth was inhibited by VGCFs. Theoretical models considering strength increment due to grain refinement resulting from VGCF addition, load bearing of VGCFs, thermal mismatch of VGCFs and aluminium and Orowan effect were developed. Theoretical values coincided well with hardness, yield strength, and ultimate tensile strength of the composites, and thus the models could precisely explain the microstructure–property relationships.  相似文献   

16.
17.
In the present work, Al–nano MgO composites using A356 aluminum alloy and MgO nanoparticles (1.5, 2.5, and 5 vol.%) have been fabricated via stir casting and powder metallurgy (PM) methods. Different processing temperatures of 800, 850, and 950 °C for stir casting and 575, 600, and 625 °C for powder metallurgy were considered. Powder metallurgy samples showed more porosity portions compare to the casting samples which results in higher density values of casting composites (close to the theoretical density) compare to the sintering samples. Introduction of MgO nanoparticles to the Al matrix caused increasing of the hardness values which was more considerable in casting samples. The highest hardness value for casting and sintering samples have been obtained at 850 and 625 °C respectively, in 5 vol.% of MgO. Compressive strength values of casting composites were higher than sintered samples which were majorly due to the more homogeneity of Al matrix, less porosity portions, and better wettability of MgO nanoparticles in casting method. The highest compressive strength values for casting and sintered composites have been obtained at 850 and 625 °C, respectively. Scanning electron microscopy images showed higher porosity portions in sintered composites and more agglomeration and aggregation of MgO nanoparticles in casting samples which was due to the fundamental difference of two methods. Generally, the optimum processing temperatures to achieve better mechanical properties were 625 and 850 °C for powder metallurgy and stir-casting, respectively. Moreover, casting method represented more homogeneous data and higher values of mechanical properties compare to the powder metallurgy method.  相似文献   

18.
One of the great challenges of producing cast metal matrix composites is the agglomeration tendency of the reinforcements. This would normally result in poor distribution of the particles, high porosity content, and low mechanical properties. In the present work, a new method for uniform distribution of very fine SiC particles with average size of less than 3 μm was employed. The key idea was to allow for gradual in situ release of properly wetted SiC particles in the liquid metal. For this purpose, SiC particles were injected into the melt in three different forms, i.e., untreated SiCp, milled particulate Al–SiCp composite powder, and milled particulate Al–SiCp–Mg composite powder. The resultant composite slurries were then cast from either fully liquid (stir casting) or semisolid (compocasting) state. Consequently, the effects of the casting method and the type of the injected powder on the microstructural characteristics as well as the mechanical properties of the cast composites were investigated. The results showed that the distribution of SiC particles in the matrix and the porosity content of the composites were greatly improved by injecting milled composite powders instead of untreated-SiC particles into the melt. Casting from semisolid state instead of fully liquid state had similar effects. The average size of SiC particles incorporated into the matrix was also significantly reduced from about 8 to 3 μm by injecting milled composite powders. The ultimate tensile strength, yield strength and elongation of Al356/5 vol.%SiCp composite manufactured by compocasting of the (Al–SiCp–Mg)cp injected melt were increased by 90%, 103% and 135%, respectively, compared to those of the composite manufactured by stir casting of the untreated-SiCp injected melt.  相似文献   

19.
A new type of composites containing eutectic oxide fibres and a high entropy alloy (HEA) with a melting point of about 1450 °C as the matrix is obtained via liquid infiltration route. A low pressure of argon gas necessary to infiltrate a fibre bundle with the molten matrix alloy is an evidence of good wetting in this system that provides a sufficiently high strength to the fibre/matrix interface. Composite specimens were tested to measure the strength at 20–1300 °C. It was found that the composite strength does not decrease to a temperature of 1200 °C. The analysis of the microstructure and strength data suggests an expectation of a high creep resistance of the composites under development.  相似文献   

20.
In the present investigation, the influence of B4C on the mechanical and Tribological behavior of Al 7075 composites is identified. Al 7075 particle reinforced composites were produced through casting, K2TiF6 added as the flux, to overcome the wetting problem between B4C and liquid aluminium metal. The aluminium B4C composites thus produced were subsequently subjected to T6 heat treatment. The samples of Al 7075 composites were tested for hardness, tensile, compression, flexural strengths and wear behavior. The test results showed increasing hardness of composites compared with the base alloy because of the presence of the increased ceramic phase. The wear resistance of the composites increased with increasing content of B4C particles, and the wear rate was significantly less for the composite material compared to the matrix alloy. A mechanically mixed layer containing oxygen and iron was observed on the surface, and this acted as an effective insulation layer preventing metal to metal contact. The coefficient of friction decreased with increased B4C content and reached its minimum at 10 vol% B4C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号