首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Candida antarctica lipase is inactivated in a mixture of vegetable oil and more than 1∶2 molar equivalent of methanol against the total fatty acids. We have revealed that the inactivation was eliminated by three successive additions of 1∶3 molar equivalent of methanol and have developed a three-step methanolysis by which over 95% of the oil triacylglycerols (TAG) were converted to their corresponding methyl esters (ME). In this study, the lipase was not inactivated even though 2∶3 molar equivalent of methanol was present in a mixture of acylglycerols (AG) and 33% ME (AG/ME33). This finding led to a two-step methanolysis of the oil TAG: The first-step was conducted at 30°C for 12 h with shaking in a mixture of the oil, 1∶3 molar equivalent of methanol, and 4% immobilized lipase; the second-step reaction was done for 24 h after adding 2∶3 molar equivalent of methanol (36 h in total). The two-step methanolysis achieved more than 95% of conversion. When two-step reaction was repeated by transferring the immobilized lipase to a fresh substrate mixture, the enzyme could be used 70 cycles (105 d) without any decrease in the conversion. From the viewpoint of the industrial production of biodiesel fuel production, the two-step reaction was conducted using a reactor with impeller. However, the enzyme carrier was easily destroyed, and the lipase could be used only several times. Thus, we attempted flow reaction using a column packed with immobilized Candida lipase. Because the lipase packed in the column was drastically inactivated by feeding a mixture of AG/ME33 and 2∶3 molar equivalent of methanol, three-step flow reaction was performed using three columns packed with 3.0 g immobilized lipase. A mixture of vegetable oil and 1∶3 molar equivalent of methanol was fed into the first column at a constant flow rate of 6.0 mL/h. The eluate and 1∶3 molar equivalent of methanol were mixed and then fed into the second column at the same flow rate. The final step reaction was done by feeding a mixture of eluate from the second column and 1∶3 molar equivalent of methanol at the same flow rate. The ME content in the final-step eluate reached 93%, and the lipase could be used for 100 d without any decrease in the conversion.  相似文献   

2.
Ethyl docosahexaenoate (E-DHA) is efficiently enriched by the selective alcoholysis of ethyl esters originating from tuna oil with lauryl alcohol using immobilized lipase. Alcoholysis of ethyl esters by immobilized Rhizopus delemar lipase raised the E-DHA content in the unreacted ethyl ester fraction from 23 to 49 mol% in 90% yield. However, the content of ethyl eicosapentaenoate (E-EPA) was higher than the initial content. Hence we attempted to screen for a suitable lipase to decrease the E-EPA content, and chose Rhizomucor miehei lipase. Several factors affecting the alcoholysis of ethyl esters were investigated, and the reaction conditions were determined. When alcoholysis was performed at 30°C with shaking in a mixture containing ethyl esters/lauryl alcohol (1:3, mol/mol) and 4 wt% of the immobilized R. miehei lipase, the E-DHA content in the ethyl ester fraction was increased and the E-EPA content was decreased. By alcoholyzing ethyl esters in which the E-DHA content was 45 mol% (E-tuna-45) for 26 h, the E-DHA content was increased to 74 mol% in 71% yield and the E-EPA content was decreased from 12 to 6.2 mol%. To investigate the stability of the immobilized lipase, batch reactions were carried out continually by replacing the reaction mixture with fresh E-tuna-45/lauryl alcohol (1:3, mol/mol) every 24 h. The decrease in the alcoholysis extent was only 17% even after 100 cycles of reaction. It was found that increasing the proportion of lauryl alcohol increased the conversion of E-EPA to lauryl-EPA. When an ethyl ester mixture in which the E-DHA content was 60 mol% (E-tuna-60) was alcoholyzed for 24 h with 7 molar equivalents of lauryl alcohol, the E-DHA content was raised to 93 mol% with 74% yield and the E-EPA content was reduced from 8.6 to 2.9 mol%.  相似文献   

3.
The conversion of waste edible oil to biodiesel fuel in a fixed-bed bioreactor was investigated. Three-step methanolysis of waste oil was conducted using three columns packed with 3 g of immobilized Candida antarctica lipase. A mixture of waste oil and 1/3 molar equivalent of methanol against total fatty acids in the oil was used as substrate for the first-step reaction, and mixtures of the first- and second-step eluates and 1/3 molar equivalent of methanol were used for the second- and third-step reactions, respectively. Ninety percent of waste oil was converted to the corresponding methyl esters (ME) by feeding substrate mixtures into the first, second, and third reactors at flow rates of 6, 6 and 4 mL/h, respectively. We also attempted one-step methanolysis of waste oil. When a mixture of waste oil and 90% ME-containing eluate (1∶3, wt/wt) and an equimolar amount of methanol against total fatty acids in the waste oil was fed into a reactor packed with 3 g of immobilized C. antarctica lipase at a flow rate of 4 mL/h, the ME content in the eluate reached 90%. The immobilized biocatalyst could be used for 100 d in the two reaction systems without significant decrease in its activity. Waste oil contained 1980 ppm water and 2.5% free fatty acids, but these contaminants had little influence on enzymatic production of biodiesel fuel.  相似文献   

4.
Acid oil, a by-product of vegetable oil refining, was enzymatically converted to fatty acid methyl esters (FAME). Acid oil contained free fatty acids (FFA), acylglycerols, and lipophilic compounds. First, acylglycerols (11 wt%) were hydrolyzed at 30 °C by 20 units Candida rugosa lipase/g-mixture with 40 wt% water. The resulting oil layer containing 92 wt% FFA was used for the next reaction, methyl esterification of FFA to FAME by immobilized Candida antarctica lipase. A mixture of 66 wt% oil layer and 34 wt% methanol (5 mol for FFA) were shaken at 30 °C with 1.0 wt% lipase. The degree of esterification reached 96% after 24 h. The resulting reaction mixture was then dehydrated and subjected to the second esterification that was conducted with 2.2 wt% methanol (5 mol for residual FFA) and 1.0 wt% immobilized lipase. The degree of esterification of residual FFA reached 44%. The degree increased successfully to 72% (total degree of esterification 99%) by conducting the reaction in the presence of 10 wt% glycerol, because water in the oil layer was attracted to the glycerol layer. Over 98% of total esterification was maintained, even though the first and the second esterification reactions were repeated every 24 h for 40 days. The enzymatic process comprising hydrolysis and methyl esterification produced an oil containing 91 wt% FAME, 1 wt% FFA, 1 wt% acylglycerols, and 7 wt% lipophilic compounds.  相似文献   

5.
Acid oil is a by-product in the neutralization step of vegetable oil refining and is an alternative source of biodiesel fuel. A model substrate of acid oil, which is composed of TAG and FFA, was used in experiments on the conversion to FAME by immobilized Candida antarctica lipase. FFA in the mixture of TAG/FFA were efficiently esterified with methanol (MeOH), but the water generated by the esterification significantly inhibited methanolysis of TAG. We thus attempted to convert a mixture of TAG/FFA to FAME by a two-step process comprising methyl esterification of FFA and methanolysis of TAG by immobilized C. antarctica lipase. The first reaction was conducted at 30°C in a mixture of TAG/FFA (1∶1, wt/wt) and 10 wt% MeOH using 0.5 wt% immobilized lipase, resulting in efficient esterification of FFA. The reaction mixture after 24 h was composed of 49.1 wt% TAG, 1.3 wt% FFA, 49.1 wt% FAME, and negligible amounts of DAG and MAG (<0.5 wt%). The reaction mixture was then dehydrated and used as a substrate for the second reaction, which was conducted at 30°C in a solution of the dehydrated mixture and 5.5 wt% MeOH using 6 wt% immobilized lipase. The activity of the lipase increased gradually when the reaction was repeated by transferring the enzyme to a fresh substrate mixture. The activity reached a maximum after 6 cycles, and the content of FAME achieved was >98.5 wt% after a 24-h reaction. The immobilized lipase was very stable in the first-and second-step reactions and could be used for >100 d without significant loss of activity.  相似文献   

6.
The non-edible crude rice bran oil was extracted from white rice bran, and then was catalyzed by immobilized lipase for biodiesel production in this study. The effects of water content, oil/methanol molar ratio, temperature, enzyme amount, solvent,number of methanol added times and two-step methanolysis by using Candida sp. 99-125 as catalyst were investigated. The optimal conditions for processing 1 g rice bran oil were: 0.2 g immobilized lipase, 2 ml n-hexane as solvent, 20% water based on the rice bran oil mass, temperature of 40 °C and two-step addition of methanol. As a result, the fatty acid methyl esters yield was 87.4%. The immobilized lipase was proved to be stable when it was used repeatedly for 7 cycles.  相似文献   

7.
Methyl or ethyl esters were produced from lard and restaurant grease by lipase- or base-catalyzed reactions. Before esterifying, some renewable substrates (lard and restaurant grease) should be manipulated through acetone fractionation or on a chromatography column packed with an adsorbent to obtain maximal reaction rate. Because lipase activity was hindered by excess amounts (more than 1 mol) of methanol, each 1 M methanol was added sequentially after 24 h of reaction. Through a three-step reaction, 74% conversion to tallow-methyl ester was obtained. However, a porous substance, such as silica gel, improved the conversion when more than 1 M methanol was used as reaction substrate. When a 1∶3 (fractionated lard/methanol, mole ratio) substrate was used, the conversion rates (i.e., extent of conversion) were 2.7 (24 h) and 2.8% (48 h). However, with 10% silica gel in the reaction mixture, the conversion rates increased to 25 and 58%, respectively. Regenerated restaurant grease (FFA removed through column chromatography) was further converted to esters by alkali-catalyzed methanolysis. After 24 h of reaction, 96% conversion was obtained, while only 25% conversion was observed from crude grease. Alkyl esters produced in this study could be used for fuels, potentially as biodiesel.  相似文献   

8.
Fatty acid alkyl esters were produced from various vegetable oils by transesterification with different alcohols using immobilized lipases. Using n‐hexane as organic solvent, all immobilized lipases tested were found to be active during methanolysis. Highest conversion (97%) was observed with Thermomyces lanuginosa lipase after 24 h. In contrast, this lipase was almost inactive in a solvent‐free reaction medium using methanol or 2‐propanol as alcohol substrates. This could be overcome by a three‐step addition of methanol, which works efficiently for a range of vegetable oils (e.g. cottonseed, peanut, sunflower, palm olein, coconut and palm kernel) using immobilized lipases from Pseudomonas fluorescens (AK lipase) and Rhizomucor miehei (RM lipase). Repeated batch reactions showed that Rhizomucor miehei lipase was very stable over 120 h. AK and RM lipases also showed acceptable conversion levels for cottonseed oil with ethanol, 1‐propanol, 1‐butanol and isobutanol (50‐65% conversion after 24 h) in solvent‐free conditions. Methyl and isopropyl fatty acid esters obtained by enzymatic alcoholysis of natural vegetable oils can find application in biodiesel fuels and cosmetics industry, respectively.  相似文献   

9.
固定化脂肪酶催化制备香叶树籽生物柴油研究   总被引:3,自引:0,他引:3  
研究了Novozym 435和Lipozyme TLIM混合脂肪酶催化香叶树籽油制备生物柴油,2种酶按1:3质量比混合使用时,既可提高反应转化率,又可降低酶的使用成本.应用响应面优化法确定了固定化酶催化香叶树籽生物柴油的最优工艺参数,采用叔丁醇作为反应体系的溶剂,最优反应条件为反应温度38.5℃、甲醇与油摩尔比4:1、叔丁醇与油体积比1:1.5、酶用量为油质量的4%,此时反应转化率达90.09%.分析表明香叶树籽油的甘油三酯主要由短链脂肪酸甘油酯组成,生物柴油中原油的甘油三酯已完全转变成脂肪酸甲酯.  相似文献   

10.
Fast formation of high-purity methyl esters from vegetable oils   总被引:16,自引:12,他引:4  
Experiments have confirmed that the base-catalyzed methanolysis of vegetable oils occurs much slower than butanolysis because of the two liquid phases initially present in the former reaction. For the same reason, second-order kinetics are not followed. The use of a cosolvent such as tetrahydrofuran or methyl tertiary butyl ether speeds up methanolysis considerably. However, like one-phase butanolysis, one-phase methanolysis initially exhibits a rapid formation of ester, but then slows drastically. Experiments show that the half-life of the hydroxide catalyst is too long to explain the sudden slowing of the reaction. Similarly, lower rate constants for the methylation of the mono- and diglycerides are not a reasonable explanation. Instead the cause has been identified as the fall in polarity which results from the mixing of the nonpolar oil with the methanol. This lowers the effectiveness of both hydroxide and alkoxide catalysts. Increasing the methanol/oil molar ratio to 27 in the one-phase system raises the polarity such that the methyl ester content of the ester product exceeds 99.4 wt% in 7 min. This has obvious implications for the size of new methyl ester plants as well as the capacity of existing facilities.  相似文献   

11.
Enzymatic methanolysis of refined soybean oil with methanol was investigated using Rhizomucor miehei lipase, Lipozyme RM IM, in n-hexane for reaction times of 30 min. Response surface methodology (RSM) based on three-level, three-factor (variable) face-centered cube design was used for the optimization of methanolysis. The independent variables that affect the methanolysis reaction conducted in n-hexane are temperature (°C), enzyme/oil weight ratio, and oil/methanol molar ratio. A good quadratic model was obtained for the methyl ester production by multiple regression and backward elimination. A linear relationship was observed between the observed and predicted values (R2−0.9635). The effects of temperature and enzyme amount, which affected methyl ester content of the product (response) positively, were significant (P<0.01). The quadratic term of temperature and the interaction term of enzyme amount with temperature affected the response negatively (P<0.01). The interaction term of enzyme amount with substrate mole ratio had a positive effect on the response (P<0.05). Critical conditions for the response at which methyl ester content of the product was 76.9% were determined to be 50°C, 2.37 methanol/oil mole ratio, and 0.09 enzyme/oil weight ratio.  相似文献   

12.
Fast formation of high-purity methyl esters from vegetable oils   总被引:4,自引:0,他引:4  
Experiments have confirmed that the base-catalyzed methanolysis of vegetable oils occurs much slower than butanolysis because of the two liquid phases initially present in the former reaction. For the same reason, second-order kinetics are not followed. The use of a cosolvent such as tetrahydrofuran or methyl tertiary butyl ether speeds up methanolysis considerably. However, like one-phase butanolysis, one-phase methanolysis initially exhibits a rapid formation of ester, but then slows drastically. Experiments show that the half-life of the hydroxide catalyst is too long to explain the sudden slowing of the reaction. Similarly, lower rate constants for the methylation of the mono- and diglycerides are not a reasonable explanation. Instead the cause has been identified as the fall in polarity which results from the mixing of the nonpolar oil with the methanol. This lowers the effectiveness of both hydroxide and alkoxide catalysts. Increasing the methanol/oil molar ratio to 27 in the one-phase system raises the polarity such that the methyl ester content of the ester product exceeds 99.4 wt% in 7 min. This has obvious implications for the size of new methyl ester plants as well as the capacity of existing facilities.  相似文献   

13.
In order to enhance the reusability, Rhizomucor miehei lipase was entrapped in a single step within silica particles having an oleic acid core (RML@SiO2). Characterization of RML@SiO2 by scanning and transmission electron microscopy and Fourier transform infrared studies supported the lipase immobilization within silica particles. The immobilized enzyme was employed for transesterification of cottonseed oil with methanol and ethanol. Under the optimum reaction conditions of a methanol‐to‐oil molar ratio of 12:1 or ethanol‐to‐oil molar ratio of 15:1, stirring speed of 250 revolutions/min (flask radius = 3 cm), reaction temperature of 40 °C, and biocatalyst concentration of 5 wt% (with respect to oil), more than 98 % alkyl ester yield was achieved in 16 and 24 h of reaction duration in case of methanolysis and ethanolysis, respectively. The immobilized enzyme did not require any buffer solution or organic solvent for optimum activity; hence, the produced biodiesel and glycerol were free from metal ion or organic molecule contamination. The activation energies for the immobilized enzyme‐catalyzed ethanolysis and methanolysis were found to be 34.9 ± 1.6 and 19.7 ± 1.8 kJ mol?1, respectively. The immobilized enzyme was recovered from the reaction mixture and reused in 12 successive runs without significant loss of activity. Additionally, RML@SiO2 demonstrated better reusability as well as stability in comparison to the native enzyme as the former did not lose the activity even upon storage at room temperature (25–30 °C) over an 8‐month period.  相似文献   

14.
The kinetics of methanolysis of sunflower oil with KOH as catalyst was investigated. The content of triglycerides, the resulting methyl esters as well as diglycerides and monoglycerides was analyzed at different times at molar ratios of methanol: sunflower oil = 3:1 and 3.3:1. At a molar ratio of 3:1 the kinetic order appears to be second order in the first minutes, but then the reaction rate decreases rapidly due to the formation of glycerine as a second phase, which leads to a loss of methanol and catalyst. The effect of temperature, amount of catalyst and type of vegetable oil on formation of methyl esters was examined.  相似文献   

15.
Esterification of corn and sunflower acid oils with straight‐ and branched‐chain alcohols were conducted using lipase B from Candida antarctica (Novozym 435) in n‐hexane. Sunflower acid oil consisted of 55.6% free fatty acids and 24.7% triacylglycerols, while the free fatty acids and triacylglycerols contents of corn acid oil were 75.3% and 8.6%, respectively. After 1.5 h of methanolysis of sunflower acid oil, the highest fatty acid methyl ester content (63.6%) was obtained at 40 °C and the total fatty acid/methanol molar ratio was 1/1, using 15% enzyme based on acid oil weight. The conversion of both acid oils with straight‐ and branched‐chain alcohols was not significantly affected by the chain length of the alcohols. However, the lowest fatty acid methyl ester content (50%) was obtained in the reaction of corn acid oil with methanol. Sunflower acid oil was converted to fatty acid esters using primer alcohols such as n‐propanol, i‐ and n‐butanol, n‐amylalcohols, n‐octanol, and a mixture of amylalcohol isomers, resulting in a fatty acid ester content of about 70% at 40 °C.  相似文献   

16.
The transesterification of karanja oil with methanol was carried out using solid basic catalysts. Alkali metal‐impregnated calcium oxide catalysts, due to their strong basicity, catalyze the transesterification of triacylglycerols. The alkali metal (Li, Na, K)‐doped calcium oxide catalysts were prepared and used for the transesterification of karanja oil containing 0.48–5.75% of free fatty acids (FFA). The reaction conditions, such as catalyst concentration, reaction temperature and molar ratio of methanol/oil, were optimized with the solid basic Li/CaO catalyst. This catalyst, at a concentration of 2 wt‐%, resulted in 94.9 wt‐% of methyl esters in 8 h at a reaction temperature of 65 °C and a 12 : 1 molar ratio of methanol to oil, during methanolysis of karanja oil having 1.45% FFA. The yield of methyl esters decreased from 94.9 to 90.3 wt‐% when the FFA content of karanja oil was increased from 0.48 to 5.75%. The performance of this catalyst was not significantly affected in the presence of a high FFA content up to 5.75%. The catalytic activities of Na/CaO and K/CaO were also studied at the optimized reaction conditions. In these two cases, the reaction initially proceeds slowly, however, leading to similar yields as in the case of Li/CaO after 8 h of reaction time. The purified karanja methyl esters have an acid value of 0.36 mg KOH/g and an ester content of 98.6 wt‐%, which satisfy the American as well as the European specifications for biodiesel in terms of acid value and ester content.  相似文献   

17.
J. Lu  L. Deng  K. Nie  F. Wang  T. Tan 《化学工程与技术》2012,35(12):2120-2124
The stability of the immobilized lipase from Candida sp. 99–125 during biodiesel production was investigated. The lipase was separately incubated in the presence of various reaction components such as soybean oil, oleic acid methyl ester, n‐hexane, water, methanol, and glycerol, or the lipase was stored at 60, 80, 100 and 120 °C. Thereafter the residual lipase activity was determined by methanolysis reaction. The results showed that the lipase was rather stable in the reaction media, except for methanol and glycerol. The stability study performed in a reciprocal shaker indicated that enzyme desorption from the immobilized lipase mainly contributed to the lipase inactivation in the water system. So the methanol and glycerol contents should be controlled more precisely to avoid lipase inactivation, and the immobilization method should be improved with regard to lipase desorption.  相似文献   

18.
响应面法优化酶催化酯交换反应研究   总被引:7,自引:0,他引:7  
为了利用植物油生产可再生的绿色能源——生物柴油,文章利用Novo435固定化脂肪酶,在无有机溶剂存在下催化菜籽油与甲醇酯交换合成生物柴油。利用响应面实验设计和分析方法对菜籽油的酯交换反应条件进行优化,得到了最佳工艺条件:醇油摩尔比1.5∶1,反应温度52℃,搅拌转速200 r/min,脂肪酶与油脂的质量比为10%,反应时间10 h,在此工艺条件下油脂的酯交换率达到48%(理论为50%)。理论甲醇量分3批加入,反应36 h后菜籽油的总酯交换率达到95%(理论酯交换率为100%)。每批试验后利用有机溶剂对脂肪酶进行清洗,然后继续反应,连续使用10个批次,油脂的酯交换率基本未变。  相似文献   

19.
以麻疯树油、亚麻油、乌柏油为原料油,采用固定化脂肪酶Lipozyme TL IM,在3.0 g油、1 mL正己烷、醇油摩尔比为3.5∶1、固定化酶质量为油质量20%的条件下进行生物柴油的制备,通过脂肪酸甲酯产率和组成分析,以考察生物柴油制备的影响因素,进行反应时间优化.结果表明,酶的催化作用对脂肪酸组分不存在选择性,且...  相似文献   

20.
黄瑛  郑海  闫云君 《应用化工》2010,39(5):625-629
探讨了以乌桕脂为原料,叔丁醇体系利用脂肪酶催化制备生物柴油的工艺。通过响应面法优化,获得最佳工艺条件为:2.5 g乌桕脂中加入0.6 mL甲醇,0.75 mL叔丁醇和9%脂肪酶,50℃反应16 h,生物柴油得率为92.34%;脂肪酶回收利用10次,生物柴油得率仍能保持在85%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号