首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过机械球磨法制备得弱结晶a-Mn02,并组装成对称型超级电容器进行充放电测试,对充放电若干次后的电极进行电化学阻谱测试。结果表明,电极过程先表现为半无限扩散阻抗特征,然后逐渐表现为有限层扩散阻抗,最后为阻挡层扩散阻抗;电极微分电容从2.40×10^-1。F减少到1.91×10^-3F;交换电流密度先减少到69.8mA/g,经过325次循环后再大幅增加到534mA/g;电极反应电阻先增加到24Ω后减小到5.2Ω,而接触电阻则从0.89Ω增加到1.9Ω。  相似文献   

2.
运用交流阻抗数据的不同处理方法 ,对模拟电解池的阻抗数据进行对比分析 ,发现复数平面图法对于取得重要的电极参数微分电容准确度较高 ,较适合无浓差极化条件下的交流阻抗数据处理工作。此种处理方法适用于玻碳电极在丙烯腈水溶液体系中的微分电容的测量  相似文献   

3.
采用螯合法制备了RGO/δ-MnO2复合材料,并用X射线粉末衍射(XRD)、低压氮气吸附脱附(BET)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱(EDS)、热重(TGA)对其结构和物相进行表征。采用循环伏安测试(CV)、恒电流充放电(GCD)以及循环测试对所制材料电化学储能进行测试。结果表明RGO/δ-MnO2复合材料比纯石墨烯和纯δ-MnO2具有更优异的电化学性能。当电流密度为1 A·g-1时,RGO/δ-MnO2复合材料的比电容可达322.6 F·g-1,比纯δ-MnO2电极材料高234.2 F·g-1,比纯石墨烯高212.1 F·g-1。当电流密度放大10倍后,RGO/δ-MnO2复合材料的比电容保留率为79.1%。在1000次恒流充放电测试后,比电容为252 F·g-1(99.6%),说明该方法制备的RGO/δ-MnO2复合材料是一种有应用前景的超级电容器电极材料。  相似文献   

4.
纳米α-MnO2/活性炭混合超级电容器的性能   总被引:1,自引:0,他引:1  
研究了以纳米α-MnO2和活性炭(AC)为电极材料的超级电容器,分别对纳米α-MnO2的制备、电解液浓度的影响进行了研究,组装了MnO2/KOH/MnO2、AC/KOH/AC、MnO2/KOH/AC三种类型的模拟电容器,用循环伏安、恒流充放电、自放电以及时间常数法对电极和电容器进行性能测试,发现当电解液KOH浓度为7 mol•L-1时,混合超级电容器性能最佳,α-MnO2单电极比电容可达237 F•g-1,混合电容器工作电压高达1.5 V,并且具有良好的大电流放电性能和较好的循环寿命,实验还表明混合超级电容器具有极低的自放电率.  相似文献   

5.
金属化合物是理想的赝电容电极材料,但是其拥有导电性差且易团聚的缺点,使得电容性能显著下降。本文通过总结近年来的研究成果,阐述了金属化合物在超级电容器中的应用以及提高各类金属化合物电容性能的方法。研究表明,金属化合物与各类材料的复合、电沉积法、化合物结构的定向合成等多种方法均可有效提高金属化合物导电性,防止团聚现象的发生。随着金属化合物缺点的不断攻克,其在超级电容器的应用也将逐渐频繁起来,同时金属化合物赝也为新兴的储能元件注入了新的活力。  相似文献   

6.
本文综述了超级电容器MnO_2基复合电极材料的研究进展,结果表明纳米结构的碳材料或导电聚合物与MnO_2复合能提升电极材料的比电容,但在循环性能上还有待提高。纳米结构碳材料、导电聚合物与MnO_2合成形成多元复合电极体现出较大的优势。构建微观结构与宏观性能之间的内在关联机制对于进一步提升MnO_2基电极材料的性能意义重大。  相似文献   

7.
本文综述了超级电容器RuO_2电极材料及其TiO_2、SnO_2、Co_3O_4、MnO_2及NiO_2等过渡族金属氧化物复合电极材料的研究进展,结果表明仅从制备方法上提高RuO_2电极材料的综合性能存在局限性,难以获得到高比电容、低成本的电极材料。采用过渡族金属氧化物掺杂RuO_2基电极材料,在性能与成本上获得了一定的进展,但是还没有真正达到降低成本与改善性能的双重作用。同时寻求性能较为优良、成本低廉的电极材料仍将成为当今超级电容器电极材料的研究热点。  相似文献   

8.
  磊等 《化工机械》2014,(1):51-55,123
以Alloy 690、Alloy 600和X80 3种典型的不锈钢材料为研究对象,利用电化学阻抗谱实验得到了3种材料在不同浓度的KCl溶液中的阻抗谱特性。实验表明Alloy 690、Alloy 600和X80的抗氯离子腐蚀性能依次降低,当氯离子含量比较少时,随着氯离子浓度的增加,腐蚀的倾向性逐步增加;但当氯离子含量超过一定值时,继续增加氯离子,腐蚀的倾向性反而会减小。R(QR)(QR)电路能够在各种情况下较好地拟合阻抗谱数据,等效电路拟合后的数据表明:外层氧化膜的电阻相对较小,可能会含有可供溶液离子扩散的通道,具有非理想电容器特征;内层氧化膜的结构对材料的抗腐蚀性能影响明显,内层氧化膜阻值突然变小是由于电子通过费米能级从金属向氧化膜渗透。  相似文献   

9.
MnO2基超级电容器电极材料   总被引:7,自引:2,他引:5       下载免费PDF全文
万厚钊  缪灵  徐葵  亓同  江建军 《化工学报》2013,64(3):801-813
超级电容器作为一种新型的储能装置,具有长寿命、高功率等特点,在诸多领域内有广泛的应用前景。在影响超级电容器性能的所有因素中,电极材料的性能起着决定性的作用。二氧化锰(MnO2)具有原料易得,价格低廉,来源广泛,环境友好等优点。综述了MnO2超级电容器电极材料的储能机理,纳米MnO2的微观结构与电化学特性之间的关系,并从纳米MnO2的制备及其综合改性角度,综述其合成、掺杂改性、复合方法在MnO2基电极材料的新进展,指出了MnO2基超级电容器电极材料的主要研究方向。  相似文献   

10.
杨旭光  陈攀  郭宇航 《现代化工》2020,(11):113-116
通过改变溶剂热反应的液体环境,探究了所制备超级电容器电极材料CuCo2S4的形貌、粒径以及作为电极材料的比容量。利用XRD、SEM等测试手段对所制备的活性材料CuCo2S4的形貌和粒径进行分析,利用循环伏安测试(CV)、恒电流充放电测试(GCD)和电化学阻抗(EIS)等测试手段对电极的电化学性能进行分析。结果表明,丙三醇溶剂环境比乙二醇溶剂环境所制备CuCo2S4的粒径更小、质量比容量更大,同时CuCo2S4颗粒粒径随着油浴保温时间延长而变大。在溶剂环境中加入丙三醇、油浴时间为10 h条件下制备的CuCo2S4电极材料具有最优的电化学性能,在电流密度为2 A/g时,质量比容量可达659 F/g。  相似文献   

11.
电极材料是决定电化学电容器性能的一个主要方面,研究与开发高性能的电极材料是人们的研究重点之一.碳电极材料比电容较小;钌等贵重金属氧化物电极材料比电容量虽然很高,但昂贵的价格限制了其实际应用.因此价格低廉、环境友好、同样具有较高氧化还原电容的过渡金属氧化物成为目前超级电容器的研究热点之一.以硝酸钴为原料,以柠檬酸为模板水热合成了前驱体,200 ℃热处理后得到了四氧化三钴.循环伏安、恒流放电等电化学测试表明,200 ℃所得四氧化三钴电极在6 mol/L氢氧化钾溶液中和-0.1~0.5 V (vs. SCE) 电位范围内,具有较好的循环稳定性能,单电极比电容达到442 F/g.为开发高性能的超级电容器电极材料提供了参考.  相似文献   

12.
超级电容器用无定形MnO2的制备及性能   总被引:1,自引:0,他引:1  
采用液相氧化还原法制备了无定形态MnO2。通过XRD、SEM、循环伏安及恒电流充放电测试对产物的物理及电化学特性进行了研究。结果表明:200℃热处理后的材料仍保持无定形态,呈形貌规则的球形。以3 mol·L-1 KOH为电解液,充放电电流为200 mA·g-1,未热处理的材料50周期比电容达到332.1 F·g-1,但500周期容量保持率仅为57.5%。200℃热处理后的材料比电容稍有下降,50周期为231.2 F·g-1,但循环性能明显提高,500周期容量保持率高达97.9%,能够满足超级电容器的需要。  相似文献   

13.
钱东 《精细化工》2011,28(5):442-446,504
在酸性条件下采用液相共沉淀法合成球状和海胆状的α-MnO2,并以α-MnO2为氧化剂,H2SO4溶液为介质,引发苯胺聚合制备得到不同质量比的聚苯胺(PANI)/α-MnO2复合物。采用XRD、FTIR、SEM等法对材料的形貌和物相进行表征,同时采用循环伏安、计时电位法考察了PANI/α-MnO2复合物在1 mol/L Na2SO4水系电解液中的电化学性能。结果表明,起始原料m(苯胺)∶m(α-MnO2)=1∶3制备的PANI/α-MnO2复合物,在制备电极过程中其质量未到α-MnO2质量一半的条件下,PANI/α-MnO2复合物的比电容达到64.58 F/g,是所合成的α-MnO2比电容(43.49 F/g)的1.48倍,且经过600次循环,其比电容保持率在85%以上,而α-MnO2只有57%的比电容保持率。  相似文献   

14.
纳米二氧化锰超级电容器电极材料的制备及改性   总被引:4,自引:2,他引:2  
采用溶胶-凝胶法制备了二氧化锰超级电容器电极材料.借助X射线衍射和扫描电镜等测试手段对其进行了物理结构表征.结果表明,产品为颗粒状的纳米α-二氧化锰,电极比容量为146 F/g.通过在煅烧过程中掺入不同质量比的氧化铝来考察氧化铝添加量对二氧化锰电极材料电容特性以及电容量的影响.实验结果表明,添加氧化铝后的二氧化锰电极材料比未添加的有较好的循环伏安特性,且当添加质量分数为1%时,电极比容量达到最大,为165 F/g,经过200次循环后容量仍保持在90%以上.  相似文献   

15.
基于细菌纤维素(BC)的三维多孔及柔性支架结构和碳纳米管(MWCNT)的优良导电性,构筑起BC/MWCNT自支撑导电基底。其中,二者通过氢键紧密结合,协同赋予复合基底优良的电导率和机械性能。然后将二氧化锰(MnO2)电沉积在该基底上,构建了一种新型的BC/MWCNT/MnO2薄膜电极。BC/MWCNT复合膜的多孔结构、电解质吸收特性及蜂窝状活性MnO2纳米片的桥连结构,赋予其出色的电化学性能(在1 mA cm-2的电流密度下,其面积比电容和质量比电容分别达到1.17 F cm-2200 F g-1)和显著的循环稳定性(在20 mA cm-2的电流密度下进行10000次循环后,其比电容保留率稳定在96%)。这种无粘合剂的薄膜电极制备简便且成本低廉,在开发柔性储能器件方面具有巨大潜力。关键词:细菌纤维素(BC);碳纳米管(MWCNT);二氧化锰(MnO2);膜电极;电化学性能中图分类号:TQ630 文献标识码: A 文章编号:1003-5214 (2020) 01-0000-00  相似文献   

16.
用化学沉淀法在活性炭(AC)表面和微孔内掺杂不同量的氢氧化镍,制备了氢氧化镍-活性炭[Ni(OH)2-AC]复合材料. 用X射线衍射(XRD)和氮气吸附等温线等对活性炭和复合材料进行表征,结果表明,所制材料为b-Ni(OH)2-AC复合材料. 对不同掺杂量的b-Ni(OH)2-AC复合材料的电化学性能进行了研究,循环伏安、恒流充放电实验表明,少量氢氧化镍掺入活性炭表面和微孔中,所得材料的比电容较活性炭有所提高,并具有良好的充放电性能;当氢氧化镍的掺入量为6%(w)时,所制备的超级电容器单电极表现出优良的电化学性能. 以活性炭电极作负极,复合材料作正极制成复合型超级电容器,循环性能测试发现,掺入6%(w)氢氧化镍的复合材料制成的Ni(OH)2-AC/AC复合型超级电容器比电容高达330.7 F/g,比活性炭(AC/AC)超级电容器比电容(245.6 F/g)提高了34.6%,且Ni(OH)2-AC/AC复合型超级电容器具有更好的循环充放电性能.  相似文献   

17.
制备了沥青焦基活性炭,将活性炭分别经水洗、酸洗纯化处理以及气流粉碎处理得超细粉末。将处理后的活性炭作为双电层电容器用电极材料,在3mol/LKOH电解液体系中组装成电容器。采用直流充放电、交流阻抗等表征手段,对比评价了各种活性炭前处理方法对电容器电化学性能的影响。结果表明,酸洗后活性炭的比电容增加,气流粉碎后活性炭的高功率充放电性能改善,以酸洗气流粉碎后活性炭为电极的电容器具有良好的能量及功率性能。  相似文献   

18.
周晓平  舒东 《广州化工》2010,38(5):163-165,178
采用液相共沉淀法制备了一种含Mn、S、O的无定型粉末材料,元素分析结果表明其组成为MnS0.4O0.8。采用XRD、SEM对其进行了物理表征。通过循环伏安和恒流充放电研究了其电容行为。结果表明:在1mol.L-1Na2SO4溶液中该材料具有良好的电容性能。当扫描速度为2mV.s-1时,其比电容为131F.g-1,经历500循环后其比电容还能保持初始值的94.8%,表现了良好的稳定性。恒流充放电实验结果表明材料的可逆性良好。此材料可作为电化学超级电容器的一种新的候选材料。  相似文献   

19.
本文以Ti_2AlC为原料,采用多种氟盐(LiF、NaF、NH_4F)与盐酸(HCl)的混合溶液刻蚀Ti_2AlC粉体,制备出具有类石墨烯结构的二维层状材料Ti_2C。实验结果表明:在40°C下刻蚀48h后,由不同氟盐刻蚀得到的试样的主晶相均为Ti_2C,具有完备的晶体结构。相比于LiF和NaF,由NH_4F和HCl混合溶液刻蚀得到的Ti_2C在超级电容器(两电极)中所得比电容量最大,可达105F/g。  相似文献   

20.
熔盐法制备λ-MnO_2及其超级电容性能   总被引:6,自引:0,他引:6  
张春霞  陈野  舒畅  葛鑫  张密林 《精细化工》2007,24(2):121-124
在600℃的m(NaC l)∶m(L iC l)=1∶3的熔盐体系中,将KMnO4反应5 h制备了MnO2。X射线衍射分析其结构表明,所制样品为λ-MnO2;扫描电镜对其形貌研究表明,样品为微米级片状结构。按m(MnO2)∶m(石墨)∶m(乙炔黑)∶m(羧甲基纤维素)∶m(聚四氟乙烯)=75∶10∶10∶3∶2制备电极材料,在电解液为c〔(NH4)2SO4〕=2mol/L的三电极体系中,通过循环伏安、交流阻抗和恒流充放电对其超级电容性能进行了考察。不同扫速循环伏安曲线表明,该材料具有典型的超级电容特性;交流阻抗测试结果表明,溶液电阻RL为0.69Ω,电极电阻RE为2.5Ω;用恒流充放电测得在1 mA恒流充放电条件下,放电比容量可达306.92 F.g-1。经5 mA恒电流循环100次,充放电效率接近100%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号